$\frac{\text { WJEC }}{\text { CBAC }}$

GCSE MARKING SCHEME

MATHEMATICS - TWO TIER LEGACY

NOVEMBER 2011

INTRODUCTION

The marking schemes which follow were those used by WJEC for the November 2011 examination in GCSE MATHEMATICS - TWO TIER LEGACY. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.
Page
Mathematics Paper 1 - Foundation Tier 1
Mathematics Paper 2 - Foundation Tier 4
Mathematics Paper 1 - Higher Tier 7
Mathematics Paper 2 - Higher Tier 9

2011 Autumn Paper 1 (Non calculator) Foundation Tier	Marks	FINAL POST CONFERENCE MARK SCHEME Comments $(14 / 11 / 2011)$ (Page 1)
1. (a) (i) 23062 (ii) eighty five thousand (one) hundred (and) five (b) (i) 23,47 (ii) 88,46 (iii) 49 (c) (i) 5630 (ii) 5600 (d) $1,3,5,15$ (e) (i) 9832 (ii) 2398	B1 B2 B1 B1 11	C.A.O. C.A.O. C.A.O. C.A.O. Accept 7×7 OR 7^{2} C.A.O. C.A.O. B1 for any 2 or 3 factors and no incorrect numbers. OR the 4 correct factors and 1 incorrect number. C.A.O. C.A.O.
2. (a) 9121171 $(\text { Total }=) 40$ (b) E (c) A, E, N, S, T along one axis Uniform scale for the frequency axis starting at 0 (No numbers interpreted as 1-12 in ones) Five bars at correct heights	B2 B1 B1 B1 B1 B2 8	B1 for any three correct (tallies and) Frequencies frequencies. take F.T. their frequencies. If frequencies get 0 precedence F.T. their table of frequencies $\underline{\text { over tallies }}$ B0 for 12, but E and 12 is B1 $\underline{\text { If freq. score 0 }}$ OR indicated on the bars themselves $\underline{\text { then all correct }}$ F.T. their table of frequencies. Use of any other scale must be clearly indicated on graph B1 for at least 3 correct bars on F.T. Bars can be of varying width B1 for $\mathbf{5}$ correct bars with frequency
3. (a) cuboid trapezium pentagon equilateral triangle (b) parallel line (c) Lines Curve	B1 7	C.A.O. Line to parallelogram gets B0 C.A.O. C.A.O. Clear intent to be parallel. F.T. the ends of their lines
4. (a) (i) 40 (ii) 58 $\begin{array}{lll} \text { (b) } \begin{aligned} 75 & \\ & 76 \\ & \\ & .72 \end{aligned} \quad \frac{3}{4} \quad 76 \% \end{array}$	$\begin{gathered} \hline \text { B1 } \\ 5 \end{gathered}$	C.A.O. C.A.O. C.A.O. C.A.O. Or equivalent. Correct answer OR F.T. their values.
5. (a) 11×5 $\begin{aligned} & =55 \\ & \mathrm{~cm}^{2} \end{aligned}$ (b) $32(\mathrm{~cm})$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \text { U1 } \\ \text { B1 } \\ 4 \\ \hline \end{gathered}$	C.A.O. Candidates who get 55 then multiply by 2 etc get M0, A0. Independent of other marks C.A.O.

2011 Autumn Paper 1 (Non calculator) Foundation Tier	Marks	FINAL POST CONFERENCE MARK SCHEME Comments $(14 / 11 / 2011)$ (Page 2)
6. (a) (b) $\begin{array}{r}8 \quad 10 \\ 16 \quad 20\end{array}$ (c) (i) 90 (ii) 100	B1 B1 B1 B1 B1 5	$\begin{aligned} & \text { C.A.O. } \\ & \\ & \text { C.A.O. } \end{aligned}$
7. All 3 quadrants correct.	B3	B1 for each correct quadrant.
8. (a) $\begin{array}{r} 36 \\ \times 48 \\ \times 288 \\ \frac{1440}{1728} \\ \\ =1728 \text { (bottles) } \end{array}$ (b) e.g. $1 \%=3$ AND $8 \%=3 \times 8$ 24	M1 A1 A1 M1 A1 5	Any correct complete method for the multiplication of 36 by 48 For either 288 or 1440 C.A.O. Place value errors get M0, A0, A0 Any valid method M1 for $\frac{8}{100} \times 300$ OR $\frac{2400}{100}$ SC1 for (un)supported 24% OR ($\mathbf{0}$). 24 M1, A0 if they go on to 300 ± 24 $\underline{\text { £24 gets M1, A1 }}$
9. Procedure for marking Q9 $(5,1)$ 1. Mark any writen coords. up to 8 independent $(5,5)$ ones as B1 if correct, -1 if incorrect down to 0. $(-3,1)$ 2. If the mark is 4 or 3 then STOP at that point. $(-3,5)$ 3. If the mark is 2 award an extra B1 if all 4 correct points are plotted unambiguously. 4. If the mark is 1 or 0 then use the SCs in the right hand column of this Mark Scheme.		Reversed coordinates get 0 each time. Penalise -1 once only for incorrect coordinate notation e.g. (x5,y1). SC2 for ONLY all the 4 correct points on the diagram OR SC1 for any 2 correct points (out of a maximum of 4 points) on diagram.
10. (a) $x-8$ (p) I.S.W. (b) 70 b (g) I.S.W. (c) 14 (d) $7 \mathrm{c}-3 \mathrm{~d}$ (e) $2 \mathrm{x}+6 \underline{\text { I.S.W }}$	$\begin{gathered} \text { B1 } \\ \text { B1 } \\ \text { B2 } \\ \text { B2 } \\ \\ \text { B1 } \\ 7 \\ \hline \end{gathered}$	Ignore $x=O R=x$ OR $y=$ etc. Ignore use of capital letter but use of a different letter is penalised -1 once only. C.A.O. Allow $70 \times b$ OR $b \times 70$ OR b70. $\underline{70+b=70 b}$ gets B0 B1 for either -6 OR 20 B1 for either 7c OR - 3d in an expression of the form ac $\pm b d$ B1 for $7 \mathrm{c}+-3 \mathrm{~d}$ C.A.O.

2011 Autumn Paper 1 (Non calculator) Foundation Tier	Marks	FINAL POST CONFERENCE MARK SCHEME
11. $\text { (a) } \begin{aligned} (180-52) / 2 & \\ & =64\left({ }^{\circ}\right) \\ (\mathrm{x}=) & 116\left({ }^{\circ}\right) \end{aligned}$ $\begin{aligned} & \text { (b) Internal angle }=95 \\ & (y=) 360-100-68-95 \\ & =97\left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { B1 } \\ \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ 6 \end{gathered}$	Look at their diagram also C.A.O. F.T. 180 - 'their 64 ', but F.T. 52 only if it is shown to be the right hand 'base' angle in the triangle. C.A.O. F.T. 'their 95 ' Watch for $180+85-100-68$ which is correct for the $M 1$ B1M0A0 for $y=95$ only seen
12. (a) $\mathrm{AB}=11.5 \mathrm{~cm}$ $\begin{aligned} & \mathrm{AB}(\mathrm{in} \mathrm{~km})=11.5 \times 5 \\ &=57.5(\mathrm{~km}) \end{aligned}$ (b) Bearing Distance	$\begin{gathered} \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \text { B1 } \\ \text { B1 } \\ 5 \end{gathered}$	Allow $\pm 2 \mathrm{~mm}$. That is, allow 11.3 to 11.7 . F.T. their $A B$ Use overlay Allow $\pm 2^{\circ}$ Allow $\pm 2 \mathrm{~mm}$
13. (a) False (indicated or implied) AND a counterexample, e.g. halving 16 ends up as 8 (b) False (indicated or implied) AND a counterexample, e.g. 33 is not prime	$\begin{gathered} \text { B2 } \\ \text { B2 } \\ 4 \\ \hline \end{gathered}$	B1 for an explanation that is on the correct lines, but has an error, e,g. ' $\mathbf{3 6}$ divides into 2 to make 18 ' or ' $\mathbf{3 6} \div \mathbf{2}=\mathbf{1 7}$ ', B 1 for an explanation that is on the correct lines, but has an error.
14.(a) Strategy, e.g. knowing that the probabilities add to 1 , or that RED with BLUE is 0.5 , or Green the same as Red RED 0.18 BLUE 0.32 (b) $0.12+0.18$ $0.3(0)$ or 30% H1	$\begin{gathered} \hline \text { M1 } \\ \\ \text { A1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ 5 \\ \hline \end{gathered}$	Also for their $\mathrm{P}($ Red $)+$ their $\mathrm{P}($ Blue $)=0.5$ Either correct response implies M1 also. $\frac{\text { C.A.O. }}{\text { C.A.O. }}$
15.(a) $90(\mathrm{~kg}), 172(\mathrm{~cm})$ (b) Positive (c) Suitable line, with some points above and below (d) Answers in the range $>60(\mathrm{~kg})$ but $\leq 70(\mathrm{~kg})$ (e) No, with a suitable reason e.g. No as there is no data around 210 cm , or "graph doesn't go that high" H2	B2 B1 B1 B1 B1 6	B1 for either or if reversed Do not accept a description No requirement to pass through the means OR Suitable answer from their line of best fit No maybe implied in their statement Allow descriptions of the scale to go up to 200.
16.(a) $60 / 80 \times 100$ $75(\%)$ (b) $300 / 12 \times 5$ OR $300 / 12 \times 7$ (£) 125 (£) 175 (c) $75 / 100 \times 562.80$ OR $3 / 4 \times 562.80$ OR $281.4(0)+$ 140.7(0) $\text { (£) } 422.1(0)$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ \text { M1 } \\ \\ \text { A1 } \\ 7 \\ \hline \end{gathered}$	Allow SC1 for $75 / 100$ Allow for 300/'their $5+7^{\prime} \times 5$ OR $\times 7$ C.A.O. C.A.O. OR equivalent
17.(a) $4 n+2$ (b) $3 x+7 x=8-4$ $x=4 / 10$ (or equivalent) ISW. H6	$\begin{gathered} \hline \text { B2 } \\ \text { B1 } \\ \text { B1 } \\ 4 \end{gathered}$	B 1 for $4 \mathrm{n} \quad 4+\mathrm{n}=\mathbf{4 n}$ gets $\mathrm{B0}$ FT until $2^{\text {nd }}$ error Accept $x=-4 /-10$
18.(a) E.g. $2^{3} \times 3$ not even powers OR 'No WHOLE number multiplied by itself gives 24 OR $2 \sqrt{6}$ is not a whole number. (b) Method that produces at least 2 correct prime factors Sight of correct factors (2, 2, 2, 2, 7) $2^{4} \times 7$ H7	$\begin{gathered} \text { E1 } \\ \\ \text { M1 } \\ \\ \text { A1 } \\ \text { B1 } \\ 4 \end{gathered}$	Accept 'no number times itself gives 24 ' only with 4×4 and 5×5 given. Accept $4 \times 4=16$ and $5 \times 5=25$. Do not accept ' 16,25 ' only. Do not accept "not even powers" without $2^{3} \times 3$ Before $2^{\text {nd }}$ error Ignore 1s seen FT their factors (with at least one index >1 used). Do not ignore 1 s .

PAPER 2 - FOUNDATION TIER

2011 Autumn Paper 2 (Calculator allowed) Foundation Tier	Marks	FINAL POST CONFERENCE MARK SCHEME Comments $(21 / 11 / 2011)$ $($ Page 1) $)$
1. (a) (£120.38) 11.04 25.38 3.8(0) (£) $160.6(0)$ I.S.W. (b) e.g. $\begin{array}{rl}10 \%=16.06 & 5 \%=16.06 / 2 \\ = & (£) 8.03\end{array}$	$\begin{gathered} \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ 6 \end{gathered}$	C.A.O. C.A.O. C.A.O. F.T. their figures for one error F.T. 'their 160.6 ' Award M1, A1 for (£)152.57 OR 'their (£) 152.57 ' on F.T.
$\begin{array}{ll} \hline \text { 2. } & \mathrm{km} \\ & \mathrm{~kg} \\ \boldsymbol{\ell} \\ & \mathrm{~m} \end{array}$	$\begin{gathered} \hline \text { B1 } \\ 4 \end{gathered}$	$\begin{aligned} & \text { C.A.O. } \\ & \text { C.A.O. } \\ & \text { Accept } \mathrm{cm}^{3} \text { OR cc OR } \mathrm{ml} \\ & \text { C.A.O. } \end{aligned}$
$\begin{aligned} & \text { 3. } 430(\mathrm{~g}) \\ & \quad 190(\mathrm{~g}) \\ & \quad(430-190) / 40 \\ & \quad=6(\mathrm{~g}) \end{aligned}$	$\begin{gathered} \text { B1 } \\ \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ 4 \\ \hline \end{gathered}$	C.A.O. C.A.O. F.T. 'their 430 - 'their 190 '
4. (a) Wage $=7 \times 15+150$ $\begin{aligned} &=(£) 255 \text { ISW } \\ &=(270-180) / 15 \\ &= 6 \end{aligned}$ $\text { (b) Number of hours }=(270-180) / 15$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ 4 \\ \hline \end{gathered}$	C.A.O. Correctly substitution including the division C.A.O. Accept embedded answers such as $270=6 \times 15+180$
5. (a) Counting squares $\begin{gathered} 42-48 \\ 210-240 \end{gathered}$ (b) d c b a	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { B1 } \\ \text { B4 } \\ 7 \\ \hline \end{gathered}$	F.T. 'their $42-48$ ' $\times 5$ correctly calculated B1 for each
6. (a) (b) No - number of pupils is odd, (so not equal number of girls and boys.) OR depends on how many tickets the girls and boys bought.	B1 B1 B1 E1 4	A marked at 1. B should be almost at 0 ($\mathbf{0}$ to under the \mathbf{p} in probabilty) C marked at centre of the line. Along these lines No may be implied in their explanation Reason overides the 'Yes' or 'No' in the comments column
7.Units used $=$ $246 \quad \underline{\text { OR } \mathbf{7 7 9 2} \times \mathbf{1 2}-\mathbf{7 5 4 6} \times \mathbf{1 2}}$ Cost of units $=$ (£) $29.52 \quad \underline{\text { OR } \mathbf{2 9 5 2 (p)}}$ Total cost $=$ (£) $51.77 \quad \underline{\text { OR } \mathbf{5 1 7 7 (\mathbf { p })}}$	$\begin{gathered} \hline \text { B1 } \\ \text { B2 } \\ \text { B1 } \\ 4 \\ \hline \end{gathered}$	F.T. 'their units'. $\quad \mathbf{B 1}$ for $£ 2952$ F.T. for 'their cost of units $+£ 22.25$
8. (a) angle at $\mathrm{A}=54^{\circ}$ $\mathrm{AC}=12.6$ Complete triangle (b) Angle	B1 B1 B1 B1 4	$\begin{aligned} & \pm 2^{\circ} \\ & \pm 2 \mathrm{~mm} \end{aligned}$ Only if at least one B1 already awarded F.T. if completed triangle joining BC. (Allow 46 - 50 in a 'good' triangle) Complete 'correct' triangle but reflected gets B2.
$\begin{aligned} & \text { 9. (a) Sum }=1176 \\ & \text { Mean }=1176 / 8 \\ & \text { (b) } 118 \quad 120 \quad 137 \quad \underline{141} \quad 151(\mathrm{~cm}) \\ & \text { (c) } 63(\mathrm{~cm}) \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { m1 } \\ \text { A1 } \\ \text { M1 } \\ \\ \text { A1 } \\ \text { B1 } \\ \hline \end{gathered}$	For attempt to add the numbers ($\mathbf{1 0 0 0} \mathbf{- 1 3 5 0}$ will imply M1) For dividing a number by 8 (dependent on the M1) C.A.O. Arranging the numbers in order (ascending or descending) (Award the M1 for 7 of the numbers in correct order) C.A.O. C.A.O.

2011 Autumn Paper 2 (Calculator allowed) Foundation Tier	Marks	FINAL POST CONFERENCE MARK SCHEME Comments $(21 / 11 / 2011)$ (Page 2)
10. Door 6 to 8 ft OR $1 \cdot 8$ to $2 \cdot 5$ metres Door $2 \cdot 5 \mathrm{~cm}$ Building $=10 \mathrm{~cm}$ Multiplying factor $=4$ Height $=$ door's estimate \times their SF (2-6) SC1 for answers which: (a) give only door's height as $\mathbf{2 . 5 \mathrm { cm }}$ and building height as 10 cm OR (b) a proper attempt at 'dividing' the building's height into equal 'door' heights	B1 B1 M1 A1 4	Unsupported answers marked as follows: F.T. their door's height estimate AND scale factors $2-6$ inc Correct units for their numerical answer must be shown somewhere in their working for this A1
11. (a) D (b) C (c) Ran a little then turned back to the start	$\begin{gathered} \frac{\mathbf{B 1}}{\mathbf{B} 1} \\ \hline \text { E1 } \\ 3 \\ \hline \end{gathered}$	Along these lines
12. (a) $\begin{array}{rlrll}12 & 14 & 20 & 22 \\ & 11 & 13 & 19 & 21\end{array}$ (b) $3 / 16$ ISW (c) $\frac{3}{16} \times 80$ $=15$	B2 B2 M1 A1 6	
13. (a) $2 p$ (b) $\begin{aligned} & \text { (i) } \quad(x=) 75 \\ & \text { (ii) } 3 y=6 \\ & (y=) 6 / 3 \text { ISW } \quad(=2) \end{aligned}$ (c) 2 (d) $\begin{aligned} 35 & =2 \times 4+3 \mathrm{M} \\ 3 \mathrm{M} & =27 \\ \mathrm{M} & =27 / 3 \quad \text { ISW } \quad(=9) \end{aligned}$	$\begin{aligned} & \hline \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & \\ & \hline 8 \end{aligned}$	Accept embedded answers such as $75 / 5=15$ Accept embedded answers such as $3 \times 2+11=17$ F.T. until $2^{\text {nd }}$ error. Final B0 for $\mathbf{6} \div \mathbf{3}$ F.T. until $2^{\text {nd }}$ error. F.T. $a M=b(a \neq 1)$ Accept embedded answers such as $35=2 \times 4+3 \times 9$
$\text { 14. } \begin{aligned} \text { Cost of all adult tickets } & =£ 488.8(0)-25 \times(£) 7.6(0) \\ & =(£) 298.8(0) \\ \text { Cost per ticket } & =298.8(0) / 24 \\ & =(£) 12.45 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ \\ 4 \\ \hline \end{gathered}$	```C.A.O. F.T. 'their 298.80 ' but NOT (£) 488.80 Note: Pupils who interchange the 25 and 24 should be marked as if correct then MR-1.```
15. (a) $11 / 40$ ISW (b) $(0 \times 10)+1 \times 19+2 \times 6+3 \times 4+4 \times 1$ $=47$	B2 M1 A1 4	C.A.O. B1 for $11 / \mathrm{m}$ in a fraction <1, B1 for $\mathrm{n} / 40($ if $<1)$ Penalise -1 for incorrect notation such as 11:40 OR 11 out of 40 etc Allow one term to be incorrect or missing. Allow M1, A0 for 47/40

Higher Tier November 2011 Paper 1	Mark	Comments (Final Post-conference version 13.11.11)
1.(a) Strategy, e.g. knowing that the probabilities add to 1 , or that RED with BLUE is 0.5 , or Green the same as Red RED 0.18 BLUE 0.32 (b) $0.12+0.18$ $0.3(0)$ or 30% or equivalent	M1 A1 A1 M1 A1 5	Also for their $\mathrm{P}($ Red $)+$ their $\mathrm{P}($ Blue $)=0.5$ Either correct response implies M1 also
2.(a) $90(\mathrm{~kg}), 172$ (cm) (b) Positive (c) Suitable line, with some points above and below (d) Answers in the range $>60(\mathrm{~kg})$ but $\leq 70(\mathrm{~kg})$ (e) No, with a suitable reason e.g. No as there is no data around 210 cm , or "graph doesn't go that high"	$\begin{gathered} \hline \text { B2 } \\ \text { B1 } \\ \\ \hline \end{gathered}$	B1 for either or if reversed Do not accept a description No requirement to pass through the means OR Suitable answer from their line of best fit No maybe implied in their statement
```3.(a) \(\mathrm{a}=70^{\circ}, \mathrm{b}=110^{\circ}, \mathrm{c}=70^{\circ}\) (b) \(360 / 10\) 180-360/10 \(144^{(0)}\) (c)(i) Bearing \(326 \pm 2^{\circ}\) (ii) \(038^{\circ} \pm 2^{\circ}\) from C \(305^{\circ} \pm 2^{\circ}\) from A D indicated or implied by point```	$\begin{gathered} \hline \text { B3 } \\ \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \text { B1 } \\ \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ 10 \\ \hline \end{gathered}$	B1 for each. FT $\mathrm{b}=180-\mathrm{a}$ and $\mathrm{c}=\mathrm{a}$ or $\mathrm{c}=180-\mathrm{b}$     OR alternatively: 8 triangles at 180 or 1440 B1    $(8 \times 180) \div 10$ M1    144 A1   Depends on at least 1 M mark
4. (a) Correct reflection in the line $x=-1$   (b) Correct translation   (c) Enlargement $1 / 2$ Correct position   (d) Bisector of angle CAB Arc radius 5 cm centre A Correct region shaded	B2 B1 M1 A1 B1 B1 B1 8	B1 for a reflection in any line indicated or either axis, OR B1 for drawing $x=-1$   Note: Scale factor 2 is NOT MR, M0 A0 $\begin{aligned} & \pm 2^{0} \\ & \pm 1 \mathrm{~mm} \\ & \text { FT for intention of bisector \& arc } \end{aligned}$
$\text { 5.(a) } 60 / 80 \times 100$ $75(\%)$   (b) $300 / 12 \times 5$ OR $300 / 12 \times 7$   (£) 125   (£) 175   (c) $75 / 100 \times 562.80 \mathrm{OR}^{3} / 4 \times 562.80$ OR $281.4(0)+140.7(0)$ (£)422.1(0)	M1 A1 M1 A1 A1 M1 A1 7	Allow SC1 for 75/100   Intention $300 /(5+7)$ then $\times 5$ or $\times 7$   CAO   CAO   OR equivalent e.g. attempting to find 7 lots of $10 \%$ and adding $5 \%$
6.(a) $4 n+2$   (b) $3 x+7 x=8-4$   $x=4 / 10$ (or equivalent)	$\begin{gathered} \hline \text { B2 } \\ \text { B1 } \\ \text { B1 } \\ 4 \end{gathered}$	B1 for 4n. B0 for $n+4=4 n$ FT until $2^{\text {nd }}$ error ISW. Accept $x=-4 /-10$
7.(a) E.g. ' $2^{3} \times 3$ not even powers',   (b) Method that produces at least 2 correct prime factors Sight of correct factors (2, 2, 2, 2, 7) $2^{4} \times 7$   (c) $3 / 5$ or 0.6   (d) $7 / 3 \times 24 / 7$ $=8$	M1   A1   B1   B1   M1   A1   7	Accept 'no number times itself gives 24 ' only with $4 \times 4$ and $5 \times 5$ given. Accept $4 \times 4=16$ and $5 \times 5=25$. Do not accept ' 16,25 '   Do not accept "not even powers" without $2^{3} \times 3$   Accept ' $2 \sqrt{ } 6$ not a whole number'   Before $2^{\text {nd }}$ error   Ignore 1s seen   FT their factors (with at least on index $>1$ used). Do not ignore 1s. CAO   Unsimplified answer award M1 only
8.(a) 2045 and 2055   (b) Sight of least width $1035(\mathrm{~mm})$ $2045+1035+2045+1035$   $6160(\mathrm{~mm})$	$\begin{gathered} \hline \text { B2 } \\ \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ 5 \end{gathered}$	B1 for each. Accept 2044.999(9999...) not 2044.9   FT their least length, not 2050 AND their least width, not 1040 CAO


Higher Tier November 2011 Paper 1	Mark	Comments (Final Post-conference version 13.11.11)
9. (a) $(x-4)(x+2)$   (b) $2 x^{2}-9 x-5$   (c) $21-2 x=20-5 x$ $\begin{aligned} 3 x & =-1 \\ x & =-1 / 3(=-0.33 \ldots .) \text { ISW } \end{aligned}$	$\begin{aligned} & \text { B2 } \\ & \text { B2 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	B1 for $\left(\begin{array}{ll}x & 4\end{array}\right)\left(\begin{array}{ll}x & 2\end{array}\right)$ with no or incorrect signs B1 for $2 x^{2}-5$ or $-9 x$ as part of a trinomial. ISW 'solving' FT until second error   Do not accept -0.3 unless $-1 / 3$ seen.   FT: $21-2 \mathrm{x}=20-\mathrm{x}$ B0, $-\mathrm{x}=-1 \quad$ B1, $\mathrm{x}=1 \quad$ B1   FT: $21-2 x=4-5 x \quad$ B0, $3 x=-17 \quad$ B1, $\quad x=-17 / 3 \quad$ B1 $125-10 \mathrm{x}=4-\mathrm{x}$ is 2 errors so no FT
(d) $24 x^{10} y^{7}$   (e) $a^{3}$	B2 B1 $10$	B1 for any two factors number, $x \& y$ correct, or correct but with "times" left in expression CAO
10.(a) 40, 50, 56, 60   (b) At least 5 plots correct horizontally At least 5 plots correct vertically All 7 points plotted correctly and joined   (c) (i) Median from their cum. freq. diagram Difference of heart rate reading for 45 \& 15 Interquartile range	B1 B1 B1 B1 B1 M1 A1 7	FT to (b) only if cumulative in (a).   B0 for bars, B1 for vertical lines. Accept plots, e.g 89 to 90 for $<90$   B1 for bars or vertical lines   Joined with a curve or a straight line   FT their cumulative frequency or other cumulative diagram in (c)   Allow consistent misread of the scale.   Correct for their cumulative freq. diagram
$\text { 11.(a) } \begin{aligned} &(3 x+2)(2 x-5) \\ & x=-2 / 3 \text { and } x=5 / 2 \end{aligned}$   (b) $(2 y+9)(2 y-9)$	$\begin{gathered} \text { B2 } \\ \text { B1 } \\ \text { B2 } \\ 5 \\ \hline \end{gathered}$	B1 for ( $3 x \ldots 2$ ) ( $2 x-\ldots$ )   FT their pair of brackets   B1 for ( $2 y \ldots 9$ )(2y...9)
12.(a) $0.3,0.2,0.8,0.2,0.8$   (b) $0.7 \times 0.2$ $=0.14$	$\begin{gathered} \text { B2 } \\ \text { M1 } \\ \text { A1 } \\ 4 \\ \hline \end{gathered}$	B1 0.3 with one other correct, or $0.2 \& 0.8$ as a pair   FT from their tree, not 0.5 s and must be $<1$
13.(a) Method for either (i) or (ii)   (i) $3 \mathbf{a}+2 \mathbf{b}$   (ii) $9 \mathbf{a}+6 \mathbf{b}$   (b) $\mathbf{K M}=12 \mathbf{a}+8 \mathbf{b}$ seen or implied Showing $\mathrm{p}=4$   (c) Collinear (or parallel)and 4 times length, OR Collinear with ratio KL:LM as 1:3, OR equivalent	M1 A1 A1 M1 A1 E2 7	(Accept missing brackets if no other marks in (a))   Simplifying - $(2 \mathbf{a}+\mathbf{b})+5 \mathbf{a}+3 \mathbf{b}$ correctly   Simplifying $-(5 \mathbf{a}+3 \mathbf{b})+14 \mathbf{a}+9 \mathbf{b}$ correctly   FT (i) + (ii)   CAO   E1 for parallel OR collinear OR 4 times length Accept 'all on straight line' for collinear
14.(a) $x=-3,1,5$   (b) Tangent at $x=4$   Gradient $=$ change $y /$ change $x$   11 from a tangent or ft reasonable tangent   (c) Line $y=10$ stated or shown   Solution $\sim-2.6, \sim 0.4, \sim 5.3$   (d) Using trapezium rule or evidence of summation of areas. At least 2 correct non zero $y$ values. Correct expression for total area. Answer 60	$\begin{gathered} \hline \text { B1 } \\ \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \text { B1 } \\ \text { B2 } \\ \\ \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ 11 \end{gathered}$	All three required   Independent of tangent drawn or not, no values required   Maybe implied   FT from incorrect line   B1 for 2 solutions, or 3 solutions from consistent MR   Must be for required area   Equal strips gives $(-3,0),(-2,21),(-1,24),(0,15),(1,0)$   Allow 1 error in $y$ value. $10.5+22.5+19.5+7.5$   CAO   An answer of ' 260 ' gets M0, M1, A0, A0 but then SC1
15. (a) $(x=) 0.6525252 \ldots \&(100 x=) 65.252525 \ldots$ with attempt to find the difference $646 / 990$   (b) $65 \sqrt{ } 5$	$\begin{gathered} \hline \text { M1 } \\ \\ \text { A1 } \\ \text { B2 } \\ 4 \\ \hline \end{gathered}$	Or equivalent   A final answer of 64.6/99 is M1 only B1 for $325=5 \times 5 \times 13$ or $\sqrt{ } 325=5 \sqrt{ } 13$ or partial simplification or shown by division

PAPER 2 - HIGHER TIER

Higher Tier November 2011 Paper 2	Mark	Comments Final 28/11/11
1.(a)(i) Their readings at 14:30 \& 13:00 and intention to subtract   (ii) $52 / 1.5$ $\begin{array}{cc}  & =52(\mathrm{~km}) \\ 52 / 1.5 & \\ & 34.666(\mathrm{~km} / \mathrm{h}) \end{array}$   (b) Explanation, e.g. "first half journey in just over an hour", "steeper to start"	M1   A1   M1   A1 $\begin{gathered} \text { E1 } \\ 5 \\ \hline \end{gathered}$	116-64. Allow for 'their readings' with intention to subtract   CAO   FT their (i)   Accept rounded or truncated. However, do not accept an answer of   35 without working or from incorrect working   SC1 for an answer of 40   Accept, e.g. "more vertical", "line increases means it is quicker"
2.(a) $-5,-2,3$   (b) $x(x-5)$   (c) $120(2 y-3)$   (d) $12 x-44=40$   OR $3 x-11=40 / 4$   $12 x=40+44$   OR $3 x=10+11$   $x=84 / 12$ (ISW)   OR $x=21 / 3$   (ISW) OR $x=7$   (e) 9	$\begin{gathered} \hline \text { B2 } \\ \text { B1 } \\ \text { B2 } \\ \\ \text { B1 } \\ 9 \end{gathered}$	B1 for any two terms in correct position. Award B1 for $-6,-5,-2$ CAO   B1 for correct partially factorised, or $120(2 y \ldots)$ or $120(\ldots-3)$   B0 for 240(y-1.5)   FT until $2^{\text {nd }}$ error in (d)   Accept embedded answer   CAO
3.(a) 0.72   (b) $18 / 100 \times 45(=8.1(0))$   $45+$ their tax   (£)53.1(0)   (c) Any correct $8 \%$ of a value used in workings $\begin{aligned} & 1600-8 \% \text { of } 1600(=1600-128) \\ & 1472-8 \% \text { of } 1472(=1472-117.76) \end{aligned}$   (£) 1354.24	$\begin{gathered} \hline \text { B2 } \\ \text { M1 } \\ \text { m1 } \\ \text { A1 } \\ \text { B1 } \\ \text { M1 } \\ \text { m1 } \\ \text { A1 } \\ 9 \end{gathered}$	B1 for 0.7(17694....)   Alternatively allow M2 for $1.18 \times 45$   CAO   OR M2 for $1600 \times 0.92^{2}$ (M1 for $1600 \times 0.92$ )   FT their 128   CAO. Penalise extra working -1   Appreciate: Possible B1 and SC1 for (£)1866.24   Simple depreciate: Possible B1 and M1 (1344)
4. $700 \times 1.64$ $=(\$) 1148$ (Canadian dollars) Conclusion, has to buy 1100 (Canadian dollars) $1100 \div 1.64$ $=670.73(17 . .)$ $£ 670.73$	M1   A1   A1   M1   A1   A1   6	FT their rounding down to nearest 50 provided M1 FT their amount of Canadian dollars but not 'their 1148', for M and $1^{\text {st }} \mathrm{A}$ only, however FT multiples of 50 for all marks $£$ must be given. Accept $£ 670.73$ p   Accept an answer of '£29.27 in credit' or similar, but an answer of 29.27 would not get the final A mark, but would do award the previous M1 A1 as alternative method
$\begin{aligned} & \text { 5.(a) Mid points } 4,12 \text { and } 20 \\ & \begin{array}{c} (15 \times 4+67 \times 12+18 \times 20) \\ 100 \\ \quad=12.2(4) \end{array} \quad(\text { OR } 60+804+360=1224) \\ & \end{aligned}$   (b)Polygon with at least 3 vertices correctly plotted (vertical \& horizontal)   All 5 vertices of the polygon correct	$\begin{gathered} \text { B1 } \\ \text { M1 } \\ \text { m1 } \\ \text { A1 } \\ \text { M1 } \\ \\ \text { A1 } \\ 6 \end{gathered}$	Two shown is sufficient if no error Attempt $\sum \mathrm{fx}$ for their mid-points that fall within the intervals including bounds   Attempt their $\sum \mathrm{fx}$ divided by 100   CAO. Accept 12 only if all working shown   No polygon M0. Ignore bars.   Mid points - allow intention (e.g. from 10 to 12 inclusion)   SC1 for a correct polygon translated horizontally or all correct plots with no polygon (or curved polygon!). Ignore joining to axis or to form a complete shape
6.(a) $2 \times \pi \times 7.2$ $=45.2(16 \ldots) \text { to } 45.3 \ldots(\mathrm{~cm})$   Degree of accuracy, whole or 1 d.p.   (b) $\begin{aligned} & 1 / 2 \pi \times 22.4^{2} \\ & \quad=787.7(6 \ldots) \text { to } 788.2\left(\ldots \mathrm{~cm}^{2}\right) \end{aligned}$   (c) $1 / 2(8.2+12.8) \times 7.6$ $79.8\left(\mathrm{~cm}^{2}\right)$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ \text { M2 } \\ \text { A1 } \\ \\ \text { M1 } \\ \text { A1 } \\ \hline \end{gathered}$	FT rounding to whole or 1d.p. provided M1 A1 awarded   Allow M1 $\quad \pi \times 22.4^{2}$   A1 FT 1575.5.. to 1576.3...   SC1 for answer 3151 to 3152.65...   Accept 80 from working
7. (a) $\begin{aligned} & 18 k-6 q=d k+7 \\ & 18 k-d k=6 q+7 \\ & k(18-d)=6 q+7 \\ & k=(6 q+7) /(18-d) \end{aligned}$   (b)(i) $7.6 \times 10^{7}$   (ii) $8 \times 10^{8}$	$\begin{gathered} \text { B1 } \\ \hline \end{gathered}$	Expand FT each stage for equivalent level of difficulty   Collect until 2 ${ }^{\text {nd }}$ error   Factorise    Divide    CAO    CAO Penalise incorrect notation once only



Higher Tier November 2011 Paper 2	Mark	Comments	Final 28/11/11
15.Overall strategy, cosine rule followed by sine rule	S1		
$\mathrm{AC}^{2}=52^{2}+37^{2}-2 \times 52 \times 37 \times \cos 19$	M1		
$\mathrm{AC}^{2}=434.644 \ldots$	A1		
$\mathrm{AC}=20.8(481 \ldots$ )	A1	Accept 21.	
$\underline{\sin B}=\underline{\sin 47}$	M1	FT candidate's AC	
$\mathrm{AC} \quad 28$			
$\sin \mathrm{B}=\sin 47 \times \mathrm{AC} / 28$	M1	Implies previous M1	
$32.9\left(9 \ldots .{ }^{\circ}\right.$ ) to $33\left(.26 \ldots{ }^{\circ}\right)$	A1		

WJEC
245 Western Avenue Cardiff CF5 2YX
Tel No 02920265000
Fax 02920575994
E-mail: exams@wjec.co.uk website: www.wjec.co.uk

