$\frac{\text { WJEC }}{\text { CBAC }}$

GCSE MARKING SCHEME

MATHEMATICS
NOVEMBER 2010

INTRODUCTION

The marking schemes which follow were those used by WJEC for the November 2010 examination in GCSE MATHEMATICS. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.

PAPER 1 - FOUNDATION TIER

2010 Autumn Paper 1 (Non calculator)	Marks	FINAL POST CONFERENCE MARK SCHEME (13/11/10) Comments (Page 1)
1. (a) (i) 4206	B1	C.A.O.
(ii) sixteen million	B1	Ignore extra units such as £.
(b) (i) 61	B1	C.A.O.
(ii) 24	B1	Accept embedded answers such as $24+38(=62)$
(iii) 21	B1	Accept 7×3 OR 3×7
(iv) 36	B1	Accept 6^{2} but not 6
(c) (i) 8620	B1	C.A.O.
(ii) 9000	B1	C.A.O.
(d) 1, 3, 11, 33	B2	B1 for any 2 or 3 factors and no incorrect numbers. OR all 4 factors and 1 incorrect number. Ignore repeats.
(e) 20/2.99 OR 20/3	M1	Award M1, A0 for unsupported 6.6(6...) OR 6.7 OR for a 'repeated addition' method which clearly shows that the pupil is finding the maximum number of ($\mathfrak{f}) 2.99$ in (\mathfrak{f})20. Look for (£)17.94 OR (£) 20.93. Ignore change
$=6$	$\begin{aligned} & \mathrm{A} 1 \\ & 12 \\ & \hline \end{aligned}$	C.A.O.
2. (a) $\frac{2}{6} \frac{5}{15}$	B2	B1 for any 1 correct and up to 1 incorrect OR for 2 correct and 1 incorrect.
(b) $£ 5-34 \mathrm{p}-£ 1.27 \quad \underline{\text { OR }} \mathbf{£ 5 - £ 1 . 6 1}$	M1	
= (f) 3.39	A1	$\begin{aligned} & \text { OR } 339 \text { OR 339p } \\ & \text { SC1 for } £ 339 \end{aligned}$
	4	
3. (i) an even chance	B1	C.A.O.
(ii) certain	B1	C.A.O.
(iii) likely	B1	C.A.O.
	3	
4. (a) (i) 31	B1	C.A.O.
(ii) 60	B1	C.A.O.
(b) $3=30(\%)$	B1	
$\frac{1}{4}=25 \underline{(\%)}$	B1	
$\frac{1}{4}, 28 \%, 3$ OR equivalents	B1	If no answer offered on the dotted lines, allow the first two B1s if 30% and/or 25% seen in subsequent work. F.T. their values. Unsupported correct list gets final B1 only
	5	
5. (a) 912688	B2	B1 for any three/four correct frequencies
(b) 1	B1	If frequencies score 0, then give B1 for all 5 correct tallies. F.T. their table of frequencies
		B0 for 12, but B1 for land 12
(c) $0,1,2,3, \mathrm{M}$ along one axis	B1	OR indicated on the bars themselves
Uniform scale (No numbers interpreted as 1-12 in ones)	B1	F.T. their table of frequencies. Use of any other scale must be clearly indicated on graph
Five bars at correct heights	B2	B1 for at least 3 correct bars on F.T. Bars can be of varying width
(d) (i) 6 (/40) I.S.W.	B1	F.T. 'their 6'. Ignore incorrect reduction
(ii) No highest number of goals given	E1	Along these lines
	9	

\begin{tabular}{|c|c|c|c|}
\hline 2010 Autumn Paper 1 (Non calculator) Foundation Tier \& Marks \& \multicolumn{2}{|l|}{FINAL POST CONFERENCE MARK SCHEME (13/11/10)
Comments
(Page 2)} \\
\hline \begin{tabular}{l}
6. (a) 32 (cm) \\
(b) \(11 \times 5\)
\[
\begin{aligned}
\& =55 \\
\& \mathrm{~cm}^{2}
\end{aligned}
\]
\end{tabular} \& \[
\begin{gathered}
\hline \text { B1 } \\
\text { M1 } \\
\text { A1 } \\
\text { U1 } \\
4
\end{gathered}
\] \& \begin{tabular}{l}
C.A.O. \\
C.A.O. \\
Independent of other mark
\end{tabular} \& \[
55^{2}, 55^{2} \mathrm{~cm} \text { get M1, A1, U0. }
\] \\
\hline \begin{tabular}{l}
7. (a) \\
(b) 12 \\
(c) \(1 \%=5\) and \(3 \%=3 \times 5\) 15 \\
(d) 9
\end{tabular} \& M1
A1

A1

B1

M1
A1

B2

8 \& \begin{tabular}{l}
Any correct complete method

For either 234 or 1950 OR A1 for 504 or 1680

C.A.O.

Place value errors get M0, A0 C.A.O.

Any correct method for findin C.A.O. M1, A0 for 15%

SC1 for unsupported 485

B1 for sight of $39+6$ OR 'the

 \&

d for the multiplication of 39 by 56

0, A0

ng 3\%

heir $45^{\prime} / 5$ OR 'unsupported $33^{\prime} / 5$
\end{tabular}

\hline | 8. (a) A at $(3,1)$ |
| :--- |
| B at $(-3,2)$ |
| C at $(-2,-1)$ |
| (b) $y=x+2$ | \& \[

$$
\begin{aligned}
& \text { B1 } \\
& \text { B1 } \\
& \text { B1 } \\
& \text { B2 }
\end{aligned}
$$

\] \& \multicolumn{2}{|l|}{| C.A.O, Reverse coordinates gets 0 . |
| :--- |
| C.A.O, Allow plots within a 2 mm square inclusive. |
| C.A.O, Accept the letters A,B, C instead of points |
| B1 for sight of $\mathrm{x}+2$ without the $\mathrm{y}=$ OR B1 for rule in words, e.g. 'second number is 2 more than the first number' |}

\hline | 9. (a) |
| :--- |
| (i) $\mathrm{k}+5$ ISW |
| (ii) $\mathrm{k}-4 \underline{\underline{\text { ISW }}}$ |
| (iii) 3 k \qquad |
| (iv) $7+10 \mathrm{k}$ ISW |
| (b) (i) $12 x$ |
| (ii) 6 a | \& \[

$$
\begin{gathered}
\text { B1 } \\
6 \\
\hline
\end{gathered}
$$

\] \& \multicolumn{2}{|l|}{| C.A.O. |
| :--- |
| C.A.O. |
| Allow $3 \times \mathrm{k}$ OR $\mathrm{k} \times 3$ OR k3 |
| Allow $7+10 \times \mathrm{k}$ |
| C.A.O. |
| C.A.O. |}

\hline | 10. (a)10 15 20
 8 12 16
 6 9 12 |
| :--- |
| (b) (i) $3 / 20$ |
| (ii) $17 / 20$ |
| (c) $5 / 20$ or equivalent |
| (d) (i) $5 / 20$ of 800 $=200$ |
| (ii) Full method of $\begin{aligned} & \quad 800 \times 50 \mathrm{p}-\text { their }(\mathrm{d})(\mathrm{i}) \times 1.50 \\ & \text { Profit }=10000(\mathbf{p}) \text { OR } \underline{(\boldsymbol{\text { f }})} 100 \end{aligned}$ | \& B2

B2

B1
B1
M1
A1

M1
M1
A1

10 \& \begin{tabular}{l}
B1 for any correct row or column.

F.T. their table

B1 for a numerator of 3 in a fraction less than 1 .

B1 for a denominator of 20 in a fraction less than 1 .

F.T. 1 - their (b) (i)

F.T. their table.

F.T. their (c).

200 out of 800 gets M1,

A1

$\frac{200}{800}$ gets M1, A0.

800

Receipts $=(\mathfrak{f}) 400$

Payouts $=(£) 300$

 \&

NOTES:

There is no F.T. for the use of any probabilities ≤ 0 OR ≥ 1.

Penalise -1 once only for consistent use of a wrong sample space.

Penalise -1 once only for consistent use of words such as " 3 out of 20 ", " 17 in 20 " OR " $3: 20$ ", "17:20".

When fraction and wrong notation seen, DO NOT penalise wrong notation.

Parts (c) and (d)

If incorrect reduction of fractions, e.g. $\frac{5}{20}=\frac{1}{5}$ then give the B1, but if they go on to use the incorrect $1 / 5$ in another part of the question, penalise -1 from an \mathbf{A} mark at their first use only.
\end{tabular}

\hline
\end{tabular}

2010 Autumn Paper 1 (Non calculator) Foundation Tier	Marks	FINAL POST CONFERENCE MARK SCHEME (13/11/10) Comments (Page 3)
11. (a) $(180-48) / 2$ $\begin{gathered} =66\left({ }^{\circ}\right) \\ (\mathrm{x}=) 114\left({ }^{\circ}\right) \end{gathered}$ (b) $360-36-115-44$ $\begin{aligned} & 4 \quad \text { OR } \quad \text { O60-195 } \\ & =165 \\ & (y=) 15\left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \text { B1 } \\ \\ \text { M1 } \\ \text { A1 } \\ 6 \end{gathered}$	Look at the diagram also C.A.O. F.T. 180 - 'their 66 ' C.A.O. F.T. 180 - 'their 165 '
12. (a) Correct cuboid (b) $3 \times 3 \times 6 \quad$ OR $3 \times 3 \times 3 \times 2$ $=54\left(\mathrm{~cm}^{3}\right)$ Watch for incorrect methods giving answer of 54	B2 M1 A1 4	B1 for a cube Only sketch asked for so B2 for cuboid like this with correct or no lengths given but only $B 1$ if any incorrect lengths are shown Condone 54^{3}. for M1, A1 F.T. from (a) $3 \times 3 \times x(x>3)$ where x is shown on their sketch in (a)
13. (a) Intention of correct location All lines $\times 2$ (b) Reflection In line $\mathrm{x}=1$ (c) Correct rotation $(-2,-1),(-2,-2),(-1,-3)$ H2abc	$\begin{aligned} & \text { B1 } \\ & \text { B2 } \\ & \\ & \text { B1 } \\ & \text { B1 } \\ & \text { B2 } \\ & 7 \\ & \hline \end{aligned}$	Award B1 for any 2 lines $\times 2$ Any other scale used $(\neq 1)$ is MR-1 Do not accept "flip" or "mirror" B1 for clockwise 90° rotation $(1,3),(2,1),(2,2)$ B0 if triangles in all quadrants
14. Entries for 15: 15 32 Entries for 100: 100 202 n (black squares) $2 \mathrm{n}+2$ or equivalent	B2 B1 B2 5	For all 4 correct B1 for any 2 OR 3 correct B1 for 2n (OR $2 \times n+1$ missing brackets) $\mathrm{OR} \times 2+2$
15 (a) $385 / 11 \quad(=35)$ (£) 70 and (£) 315 (b) Reduction of denominator to 0.2 or 0.25 or 0.3 Answers in the range 2000 to 3050 from appropriate working H5bc	M1 A1 M1 A1 4	Suitable for ease of calculation
16. (a) m^{6} (b) $\begin{aligned} & 7 x-28=3 x-10 \\ & 4 x=18 \\ & x=18 / 4 \quad \text { ISW }(=41 / 2 \text { OR } 4 \cdot 5) \end{aligned}$	B1 B1 B1 B1 4	C.A.O. Watch out for $\mathrm{m}^{20} / \mathrm{m}^{3}=\mathrm{m}^{6 \cdot 66 . .}=\mathrm{m}^{6}$ Clearing brackets correctly $=3 x-10 \quad$ F.T. until $2^{\text {nd }}$ error F.T. their terms F.T. for $\mathrm{ax}=\mathrm{b}(\mathrm{a} \neq 1)$
17. (a) 6^{2} or 36 AND 8^{2} or 64 AND 10^{2} or 100 seen $36+64=100$ or $\underline{\mathbf{6}^{\mathbf{2}}+\mathbf{8}^{\mathbf{2}}=\mathbf{1 0}^{\mathbf{2}}}$ or a statement related to square on hypotenuse (b) $\begin{aligned} 1 / 2 \times & \pi \times 20^{2} \\ = & 628\left(\mathrm{~cm}^{2}\right) \end{aligned}$ H6	E1 E1 M1 A1 4	Accept $6,8,10$ is double the triple 3,4,5 for E2 Watch for correct method being used. SC1 for an answer of 1256

PAPER 2 - FOUNDATION TIER

2010 Autumn Paper 2 (Calculator allowed) Foundation Tier	Marks	FINAL CONFERENCE MARK SCHEME (20/11/10) Comments (Page 1)
1. (a) (i) $\begin{array}{cc} & (4.05) \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & 1.24 \\ & \\ & \end{array}$ (ii) $\begin{aligned} & 10 \%=1.54 \\ & 5 \%=(£) 0.77 \text { OR } 77 \mathrm{p} \end{aligned}$ (b) $35 \times 5 \times 4$ (£) 7 OR $700(\mathrm{p})$	B1 B1 B1 B1 M1 A1 M1 A1 8	C.A.O. C.A.O. C.A.O. F.T. their figures for 1 error Unsupported 15.4(0) gets B4. F.T. their total Any correct method for 5\% (£)14.63 gets the M1, A1. Unsupported .77p gets M1, A0 C.A.O. SC1 for (£)9.8(0) OR 980(p)
2. (a) Attempt to count squares $54-62$ inclusive (b) (i) Perpendicular through A (ii) Trapezium	M1 A1 B1 B1 4	Intent rather than accuracy C.A.O.
3. (a) (£) 12.65 (b) (£) $14.75 \mathrm{OR}(\mathfrak{f}) 6.70$ $14.75-6.70=(£) 8.05$ (c) No 9 a.m. available (on Saturday) OR delivery by $1: 00 \mathrm{pm}$ (£) 23.85	B1 B1 M1 A1 E1 E1 6	C.A.O. For either cost For subtracting the 2 costs C.A.O. Consistent readings from the 500 g row, that is, $\begin{aligned} & \frac{12.65-5.40=7.25 \text { gets B1, M1, A1, MR-1 }}{\text { OR }} \\ & \text { Consistent readings from the } 1 \mathrm{~kg} \text { row, for SATURDAY, } \\ & \mathbf{1 6 . 9 5 - 8 . 9 0 = 8 . 0 5 \text { gets B1, M1, A1, MR-1 }} \end{aligned}$ Along these lines, the (only) delivery is for $1 \mathrm{p} . \mathrm{m}$.
4. $\begin{aligned} & \mathrm{A}=40 \\ & \mathrm{~B}=110 \\ & \mathrm{C}=0 \\ & \mathrm{D}=-50 \end{aligned}$	$\begin{gathered} \hline \text { B1 } \\ 4 \end{gathered}$	$\begin{aligned} & \text { C.A.O. } \\ & \text { C.A.O. } \\ & \text { C.A.O. } \\ & \text { C.A.O. } \end{aligned}$
5. (a) Cost $=40 \times 36+30$ $=(\mathfrak{£}) 1470$ (b) $\begin{aligned} \text { Deposit } & =1330-36 \times 35 \\ & =(£) 70 \end{aligned}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ 4 \\ \hline \end{gathered}$	C.A.O. Correctly substitution in this form C.A.O. Accept embedded answers
6. (a) Both lines of symmetry (b) kite identified kite (c) 180-90-26 OR $90-26$ $=64$	$\begin{gathered} \hline \text { B2 } \\ \\ \text { B1 } \\ \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ 6 \end{gathered}$	B1 for either line and no other OR B1 for both correct lines and one incorrect line. F.T. their chosen shape C.A.O.

\begin{tabular}{|c|c|c|}
\hline 2010 Autumn Paper 2 (Calculator allowed) Foundation Tier \& Marks \& FINAL CONFERENCE MARK SCHEME (20/11/10)
Comments
(Page 2) \\
\hline \begin{tabular}{l}
Overlay \\
7. (a) angle of \(54^{\circ}\) at Q
\[
\mathrm{PQ}=9(\mathrm{~cm})
\] \\
Complete triangle \\
(b) obtuse
\end{tabular} \& \[
\begin{gathered}
\text { B1 } \\
4
\end{gathered}
\] \& \[
\begin{aligned}
\& \pm 2^{\circ} \text { Line must be drawn } \\
\& \pm 2 \mathrm{~mm} \text { Line need not be drawn. Look for any indication of } \\
\& \text { a mark at 9cm } \pm 2 \mathrm{~mm} \\
\& \text { Provided at least B1 awarded } \\
\& \text { C.A.O. }
\end{aligned}
\] \\
\hline 8.
\[
\begin{aligned}
\hline \& \operatorname{Up~} 3\left({ }^{\circ} \mathrm{C}\right) \\
-5\left({ }^{\circ} \mathrm{C}\right) \&
\end{aligned}
\] \& \[
\begin{gathered}
\hline \text { B1 } \\
\text { B1 } \\
\text { B1 } \\
3 \\
\hline
\end{gathered}
\] \& \[
\begin{aligned}
\& \hline \text { C.A.O. } \\
\& \text { C.A.O. } \\
\& \text { C.A.O. }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
9. (a) Sum of the numbers (272) Sum/8 \\
34 \\
(b) 38
\end{tabular} \& \[
\begin{gathered}
\mathrm{M} 1 \\
\mathrm{~m} 1 \\
\\
\text { A1 } \\
\text { B1 } \\
4 \\
\hline
\end{gathered}
\] \& \begin{tabular}{l}
For attempt to add the numbers \\
For a division by 8 of a number in the range \(220-320\) \((45+36+14+41+29+52+18+37) / 8\) gets M1,m1 \\
C.A.O. \\
C.A.O.
\end{tabular} \\
\hline \begin{tabular}{l}
10. Man 5 to 7 ft OR 1.5 to 2.5 metres \\
Man 1.3 to \(1.4 \mathrm{~cm} \quad\) Cliff height \(=14.5 \mathrm{~cm}\) \\
Multiplying factor \(=\underline{\mathbf{1 0}}\) to \(\mathbf{1 1 . 2}\) \\
Estimate height of cliff \(=\) man estimate \(\times\) factor \\
F.T. their man estimate \(\times\) their SF (\(7-14 \mathrm{inc}\).) \\
\(=\) correct answer for their figures \\
IF B0, B0, M0, A0 awarded then \\
SC1 for answers which: \\
EITHER (a) only give man's height between \(1 \mathrm{~cm} \&\) 1.5 cm and cliff's height as \(14.5 \mathrm{~cm} \pm 2 \mathrm{~mm}\) INCL. \\
OR (b) a proper attempt at 'dividing' the cliff's height into equal parts
\end{tabular} \& B1
B1
M1
A1

4 \& | Award the B1s on sight of man's height and scale factor then use the diagram below to help in awarding the M1, A1 |
| :--- |
| F.T. their man's height estimate AND scale factors $\mathbf{7 - 1 4}$ inc. Correct units must be seen at least once to get the final A1 |

\hline | 11. (a) $(\mathrm{F}=) 3 \times 8+2 \times 6$ $=36$ |
| :--- |
| (b) (i) $(x=) 5$ |
| (ii) $(\mathrm{y}=) 18$ |
| (c) $2 x+7 y$ | \& \[

$$
\begin{gathered}
\hline \text { M1 } \\
\text { A1 } \\
\text { B1 } \\
\text { B1 } \\
\text { B2 } \\
6 \\
\hline
\end{gathered}
$$

\] \& | Must be seen to be a proper substitution M0 for $38+26$ |
| :--- |
| 24W + 12T gets M0 |
| C.A.O. Accept embedded answers such as $5+7=12$ |
| C.A.O. Accept embedded answers such as $18 / 3=6$ |
| B1 for the $2 x$ or the 7 y in an expression of the form $\mathbf{2 x + f (y)}$ OR $\mathrm{g}(\mathrm{x})+7 \mathrm{y}$ |

\hline | 12. (a) $29 / 50$ OR 58\% OR $\mathbf{5 8}$ |
| :--- |
| (b) $\begin{gathered} 23 \times 9+24 \times 12+25 \times 16+26 \times 10+27 \times 3 \\ =1236 \end{gathered}$ | \& \[

$$
\begin{gathered}
\hline \text { B2 } \\
\\
\text { M1 } \\
\text { A1 } \\
4
\end{gathered}
$$

\] \& | B1 for 29/x in a fraction <1 OR B1 for $\mathrm{y} / 50$ (if <1) |
| :--- |
| Penalise - $\mathbf{1}$ for incorrect notation such as 29:50, 29 out of 50, 29 in 50 etc. |
| C.A.O. |

\hline $$
\text { 13. } \begin{aligned}
& \text { Cost of apples }=£ 6.72-1.4 \times 1.55 \\
&=(£) 4.55 \\
& \text { Cost per kg }=4.55 / 2.5 \\
&=(£) 1.82
\end{aligned}
$$ \& \[

$$
\begin{gathered}
\text { M1 } \\
\text { A1 } \\
\text { M1 } \\
\text { A1 } \\
4
\end{gathered}
$$

\] \& | C.A.O. |
| :--- |
| F.T. 'their 4.55 ', but not $£ 6.72$. |
| Final answer must be in correct money format |

\hline | 14. |
| :--- |
| 3 or 4 angles correct and correctly labelled. |
| 3 or 4 angles correct, labels not fully correct. |
| 2 angles correct and correctly labelled. |
| 2 angles correct, labels not fully correct. |
| 1 angle correct and correctly labelled. |
| OR |
| If 0 OR 1 for their diagram or no diagram, |
| 360/60 |
| Angles are 102, 132, 54 and 72 | \& | B4 |
| :--- |
| OR |
| B3 |
| B3 |
| B2 |
| B1 |
| M1 |
| A1 |
| 4 | \& | Use overlay Allow $\pm 2^{\circ}$ |
| :--- |
| Correct labels (Words NOT the frequency OR angle). |
| 3 correct labels is enough. |
| If only B1 is scored for the diagram, and all the angles given correctly, then cancel the B1 and award M1, A1 for 2 marks. |
| If B0 scored for the diagram, check the angles and the method to see if the M1 and the A1 can be awarded. |
| (1 is) 6° gets the M1. |
| OR SC1 for all correct percentages: $28 \cdot 3,36 \cdot 7,15,20$ |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline 2010 Autumn Paper 2 (Calculator allowed) Foundation Tier \& Marks \& \multicolumn{2}{|l|}{\begin{tabular}{cc}
FINAL CONFERENCE MARK SCHEME (20/11/10) \\
Comments \& (Page 3)
\end{tabular}} \\
\hline \begin{tabular}{l}
15. (a) \(10.5-10 \cdot 9\)
\[
\begin{aligned}
\& \quad \times 6 \\
\& =63(\cdot 0)-65 \cdot 4(\mathrm{~km})
\end{aligned}
\] \\
(b) Bearing (Mark this first) \\
Distance (Must be in the sea)
\end{tabular} \& B1
M1
A1

B1

B1 \& \multicolumn{2}{|l|}{| FT 'their $10 \cdot 5-10 \cdot 9$ ' $\times 6$ |
| :--- |
| Unsupported answers in this range get the 3 marks |
| Overlay |
| Allow $\pm 2^{\circ}$ |
| Allow $\pm 2 \mathrm{~mm} \quad$ If $\mathbf{B} 1$ for bearing is awarded then this $\mathbf{B} 1$ is awarded for any point on the bearing that is $8 \mathrm{~cm} \pm 2 \mathrm{~mm}$ from Q. Use your overlay to measure this. |
| If the first B1 has not been awarded, then this B1 is for any point that is $8 \mathrm{~cm} \pm 2 \mathrm{~mm}$ from Q. |}

\hline | 16. 1604 | a |
| :---: | :---: |
| $200.5(0)$ | b |
| 230.76 | c |
| $11.53(8)$ | d |
| $260.11(8)$ | e |
| | |
| $6.13(2) \mathrm{CR}$ | | \& B1

B1
B1
B1
B1

B1 \& | C.A.O. |
| :--- |
| F.T. (B0 unless in £s) |
| F.T. |
| F.T. |
| F.T. |
| F.T. | \&

\hline $$
\text { 17. } \begin{aligned}
44 \times 1.15 & =50.6(0 \text { euros }) \\
40 \times 0.98 & =39.2(0 \text { euros })
\end{aligned}
$$

$$
11.4(0 \text { euros })
$$ \& M1

A1
M1
A1
A1
5 \& \multicolumn{2}{|l|}{FT provided that both M marks are awarded Final answer must be numerically correct for euros}

\hline | 18. (a) $\text { (a) } \begin{aligned} \mathrm{c} & =10 \\ \mathrm{a} & =7 \\ \mathrm{~b} & =5 \\ \mathrm{c}+\mathrm{b} & =15 \\ \text { (b) } 4, & 7,12 \end{aligned}$ |
| :--- |
| (c) $7 \mathrm{n}+1$ | \& B1

B1
B1
B1
B2

B2

8 \& \multicolumn{2}{|l|}{$$
\begin{aligned}
& \text { STRICT FT their } \mathrm{c}-3 \\
& \text { STRICT FT their } 12-\mathrm{a} \\
& \text { STRICT FT their } \mathrm{c}+\mathrm{b} \\
& \text { B1 } 1^{2}+3,2^{2}+3,3^{3}+3 \text { OR any } 2 \text { terms correct in correct position } \\
& \frac{\text { B1 for } 3,4,7}{\text { B1 for } 7 \mathrm{n}}
\end{aligned}
$$}

\hline | 19. $\mathrm{P}(\mathrm{HH})=1 / 4$ OR $\mathrm{P}(\mathrm{TT})=1 / 4$ OR HH TT HT TH $P(H H)=1 / 4$ AND $P(T T)=1 / 4$ |
| :--- |
| Conclusion that the statement is not true | \& \[

$$
\begin{gathered}
\mathrm{M} 1 \\
\text { A1 } \\
\text { A1 } \\
3
\end{gathered}
$$

\] \& \multicolumn{2}{|l|}{| Showing either one of the probabilities is $1 / 4$ or the sample space. |
| :--- |
| Accept at the stage $P(H H)=1 / 2 \times 1 / 2 \quad$ OR $P(T T)=1 / 2 \times 1 / 2$ |
| For showing both events to have a probability of $1 / 4$ |}

\hline | 20. Mid points 4, 11, 18 |
| :--- |
| $4 \times 15+11 \times 33+18 \times 12$ OR 639 |
| ($\Sigma f x / 60=$) 639/60 |
| $10.65 \ldots$ (days) rounded or truncated | \& B1

B1
M1
A1

4 \& \multicolumn{2}{|l|}{| FT for their mid points from within group FT "their correctly evaluated $\sum f x$ " / 60 . |
| :--- |
| Do not allow unsupported 11, but unsupported 10.6 or 10.7 awarded all 4 marks. |
| FT answer of (lower)7.65. or (upper) 13.65 |}

\hline | 21. One correct evaluation $0 \leq x \leq 1$ |
| :--- |
| 2 correct evaluations, $0.6 \leq x \leq 0.75, \quad$ one either side of 0 |
| 2 correct evaluations, $0.65 \leq x \leq \underline{\mathbf{0 . 7 5}}$, one either side of 0 |
| 0.7 |
| No calculations shown: accept "too high",">", etc. H9 | \& B1

B1
M1

A1

4 \& \begin{tabular}{lc}
x \& $\mathrm{x}^{3}+\mathrm{x}-1$

0 \& -1

1 \& 1

\&

0.61 \& -0.163019

0.62 \& -0.141672

0.63 \& -0.119953

0.64 \& -0.097856

0.65 \& -0.075375

0.66 \& -0.052504

0.67 \& -0.029237

0.68 \& -0.005568

0.69 \& 0.018509

 \&

x \& $\mathrm{x}^{3}+\mathrm{x}-1$

\&

0.1 \& -0.899

0.2 \& -0.792

0.3 \& -0.673

0.4 \& -0.536

0.5 \& -0.375

0.6 \& -0.184

0.7 \& 0.043

0.8 \& 0.312

0.9 \& 0.629

\&

$\underline{\mathbf{0 . 7 5}}$ \& $\underline{\mathbf{0 . 1 7 2}}$

\hline
\end{tabular}

\hline
\end{tabular}

PAPER 1 - HIGHER TIER

Paper 1 November 2010 Higher Tier		Comments - (Page 1)
1.(a) All points plotted correctly (b) Positive (c) Line of best fit with points above and below (d) Number of visitors from their line of best fit	$\begin{aligned} & \hline \text { B2 } \\ & \\ & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & 5 \\ & \hline \end{aligned}$	B1 for at least 3 correct plots. Ignore line of best fit at this stage. If B2 penalise joined point to point -1 Do not accept descriptions. No line of best fit then B0
2.(a) Intention of correct location All lines x2 (b) Reflection In line $\mathrm{x}=1$ (c) Correct rotation $(-2,-1),(-2,-2),(-1,-3)$ (d) Enlargement $1 / 2$ Correct position	$\begin{aligned} & \text { B1 } \\ & \text { B2 } \\ & \\ & \text { B1 } \\ & \text { B1 } \\ & \text { B2 } \\ & \\ & \text { B1 } \\ & \text { B1 } \\ & \hline \end{aligned}$	Award B1 for any 2 lines x2. Do not accept "flip" or "mirror" B1 for clockwise 90^{0} rotation (1,3), (2,1), (2,2) B0 if triangles in all quadrants
3.(a) $\mathrm{a}=55^{\circ}, \mathrm{b}=55^{\circ}, \mathrm{c}=142^{\circ}, \mathrm{d}=38^{\circ}$ (b)(i) Bearing $258^{0} \pm 2^{0}$ (ii) $100^{0} \pm 2^{0}$ from X $225^{0} \pm 2^{0}$ from Y Z indicated or implied by point (iii) $20 \times$ their XZ correctly evaluated	B4 B1 M1 M1 A1 B1 9	B1 for each, $\mathrm{FT}(\mathrm{b})=(\mathrm{a})$ and $(\mathrm{d})=180-(\mathrm{c})$ Depends on at least 1 M mark Allow $\pm 2 \mathrm{~mm}$ tolerance for their measurement If units are given they must be correct
	$\begin{aligned} & \hline \text { B2 } \\ & \\ & \text { B1 } \\ & \text { B2 } \\ & 5 \\ & \hline \end{aligned}$	B1 for any 2 correct entries B1 for 2 n OR $2 \times \mathrm{n}+1$ missing brackets OR for $\times 2+2$
5.(a) (i) 184.626 (ii) 7890 (iii) 92313 (b) $385 / 11 \quad(=35)$ (£) 70 and (£) 315 (c) Reduction of denominator 0.2 or 0.25 or 0.3 Answers in the range 2000 to 3050 from appropriate working	B1 B1 B1 M1 A1 M1 A1 7	Suitable for ease of calculation
6.(a) 6^{2} or 36 AND 8^{2} or 64 AND 10^{2} or 100 seen $36+64=100$ or $6^{2}+8^{2}=10^{2}$ or a statement related to square on hypotenuse (b) $\begin{aligned} 1 / 2 \times \pi & \times 20^{2} \\ & =628\left(\mathrm{~cm}^{2}\right) \end{aligned}$	$\begin{aligned} & \hline \text { E1 } \\ & \text { E1 } \\ & \\ & \text { M1 } \\ & \text { A1 } \\ & 4 \\ & \hline \end{aligned}$	Accept 6,8,10 is double the triple 3,4,5 for E2 SC1 for an answer of 1256
7. (a) 6 bananas + $3 \mathrm{~b}+1 \mathrm{a}=65$ 2 apples $=130$ $7 \mathrm{~b}+2 \mathrm{a}=149$ (1.49) 1 banana $=149-130$ Equal coefficients $=19$ (pence) $\mathrm{b}=19$ (pence) 1 apple $=8$ (pence) $\mathrm{a}=8$ (pence) (b) $2(2 \mathrm{x}+3)+4(\mathrm{x}-1)=7$ or equivalent $\begin{aligned} & 8 x+2=7 \\ & x=5 / 8 \mathrm{ISW} \end{aligned}$	M1 M1 A1 A1 M2 A1 A1 8	Accept mixed units of money for M marks, e.g. 1.3 or 130,149 or 1.49 This maybe implied by the price of the apple Award B4 for answer only Correctly clearing all 3 fractions, OR M1 for clearing 2 fractions FT from M1

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{} \& \& Comments - (Page 2) \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
8.(a) \(\mathrm{a}^{7}\) \\
(b) \(\mathrm{x}^{2}+2 \mathrm{x}\) \\
(c)
\[
\begin{aligned}
6 w+6 y \& =10 y-7 \\
6 w \& =10 y-6 y-7 \\
w \& =(4 y-7) / 6 \text { or equivalent }
\end{aligned}
\] \\
(d)
\[
\begin{gathered}
(x-3)(x+4) \quad(=0) \\
x=3 \text { and } x=-4
\end{gathered}
\] \\
(e) \(3 \mathrm{n}-\mathrm{n}>9-5\)
\[
\mathrm{n}>4 / 2 \quad \text { ISW }
\]
\end{tabular}} \& B1
B1
B1
B1
B1
B2
B1
B1
B1
10 \& \begin{tabular}{l}
CAO \\
FT until \(2^{\text {nd }}\) error in (c) \(O R w+y=(10 y-7) / 6 B 2\)
\[
w=(10 y-7) / 6-y \text { B1 }
\] \\
Mark final answer \\
B1 for (\(\mathrm{x} \ldots .3\)) (\(\mathrm{x} . . .4\)) \\
FT their pair of brackets \\
FT until \(2^{\text {nd }}\) error. Use of " \(=\) " gets 0 marks, unless replaced to give correct answer, then B2
\end{tabular} \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
9.(a) Method with at least 2 correct prime factors \\
Sight of correct factors (\(2,2,3,3,3,7\))
\[
2^{2} \times 3^{3} \times 7 \text { or } 2^{2} \cdot 3^{3} \cdot 7
\] \\
(b) \(\begin{gathered}2^{6} \times 5^{2} \text { OR } 64 \times 25 \text { OR } 256 \times 25 / 4 \\ 1600 \\ 1.6 \times 10^{3}\end{gathered}\)
\end{tabular}} \& M1
A1
B1
B1
B1
B1
6 \& \begin{tabular}{l}
Ignore 1s seen \\
FT their factors (with at least on index \(>1\) used). \\
Do not ignore 1s. \\
Or alternative first stage of working \\
CAO \\
FT for their answer expressed in standard form
\end{tabular} \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
10.(a) Last reading (0.7 or 100) \\
Reason "More throws gives better estimate"
\[
\text { (b)(i) } 0.6 \times 60
\]
\[
=36
\] \\
(ii) \(100-70\)
\[
=30
\]
\end{tabular}} \& B1
E1
M1
A1
M1
A1
6 \& \(\mathrm{SC1}\) for sight of 0.3 or 1-0.7 \\
\hline \multicolumn{4}{|l|}{\[
\text { 11. Sight of } 90^{(0)} 62^{(0)}
\]} \& \begin{tabular}{l}
M1 \\
A1 \\
2 \\
\hline
\end{tabular} \& \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
\[
\begin{aligned}
\& \text { 12. (a) y } \alpha 1 / \mathrm{x}^{2} \text { OR } \mathrm{y}=\mathrm{k} / \mathrm{x}^{2} \\
\& 4=\mathrm{k} / 5^{2} \\
\& \mathrm{y}=100 / \mathrm{x}^{2}
\end{aligned}
\] \\
(b)
\end{tabular}} \& \begin{tabular}{c}
B1 \\
M1 \\
A1 \\
\\
B2 \\
5 \\
\hline
\end{tabular} \& \begin{tabular}{l}
FT non linear only \\
Maybe implied in part (b) \\
B1 for each value. FT their non linear expression for SC1 only, both correct answers
\end{tabular} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
13.(a)(i) Entries 16, 16 and 20 \\
(ii) Attempt to find \(1 / 4\) or \(3 / 4\) of 16 Either \(60-3 / 4 \times 16\) OR \(1 / 4 \times 16+20+16+8\) 48 (logs) \\
(b)Entries 40, 150, 40, 30 \\
Correct histogram \\
(c) Explanation \\
Yes, stated or implied \\
14. (a) (\(\mathrm{x}=\)) \(-1,2,5\) \\
(b) Tangent drawn at \(x=4.5\) \\
Grad \(=\) change \(y /\) change \(x\) \\
(9.75 or) FT for their reasonable tangent \\
(c) Line \(\mathrm{y}=\mathrm{x}\) stated or shown \\
3 x value solutions \\
(d) Using trapezium rule or summation of areas Use of y values \(0,10,8,0\) \\
Correct expression for total area 18 (unit \({ }^{2}\))
\end{tabular}}} \& B1
M1
M1
A1
M2
A1

M1
A1

9 \& | Or $1 / 4$ or $3 / 4$ of their first entry in (i) |
| :--- |
| M1 for any 2 correct entries |
| FT their frequency densities provided at least M1 awarded |

\hline \& \& \& \& | B1 |
| :--- |
| B1 |
| M1 |
| A1 |
| B1 |
| B2 |
| B1 |
| B1 |
| B1 |
| M1 |
| A1 |
| 11 |
| 1 | \& | Has to be "change in" values |
| :--- |
| Maybe implied |
| B1 for 2 solutions. FT from incorrect line |
| Allow 1 error in y value |
| CAO |
| Working includes below x - axis B marks only |

\hline \multicolumn{4}{|l|}{| 15.(a) Suitable sketch |
| :--- |
| (b) $60^{(0)}$ $-60^{(0)}$ |} \& | B2 |
| :--- |
| B1 |
| B1 |
| 4 | \& | B1 either steeper or intention to reflect in x -axis Allow $\pm 2^{0}$ |
| :--- |
| FT -(first answer). Penalise further values -1 |

\hline
\end{tabular}

PAPER 2 - HIGHER TIER

\begin{tabular}{|c|c|c|}
\hline Paper 2 November 2010 Higher Tier \& \& Comments - (Page 1) \\
\hline \begin{tabular}{l}
1.(a) \(84.96+354\) OR \(1.24 \times 354\)
\[
=(\mathfrak{£}) 438.96
\] \\
(b) \(146.32 / 236(\times 100)\) \\
(c) \(62(\%)\) \\
(c) e.g. \(0.66(6 .\).\() or 0.7\) or \(0.67 \quad 0.6 \quad 0.45\)
\(9 / 20\) OR 0.45
\end{tabular} \& \[
\begin{gathered}
\hline \text { M2 } \\
\text { A1 } \\
\text { M1 } \\
\text { A1 } \\
\text { B1 } \\
\text { B1 } \\
\\
7 \\
\hline
\end{gathered}
\] \& \begin{tabular}{l}
M1 for \(24 / 100 \times 354+354\) \\
ISW \\
Answer of 0.62 is M1 \\
Or equivalent as percentage, or common denominator fractions \\
Independent of working. OR FT from one incorrect or missing conversion. Answer only B0 B1
\end{tabular} \\
\hline \begin{tabular}{l}
2.(a) \((x=) 80\) \\
(b) \(7(2 y+5)\) \\
(c)
\[
\begin{array}{lc}
12 \mathrm{x}+28=64 \& \text { OR } 3 \mathrm{x}+7=64 / 4 \\
12 \mathrm{x}=36 \& 3 \mathrm{x}=9 \\
\mathrm{x}=36 / 12 \quad(=3) \& \mathrm{x}=9 / 3(=3
\end{array}
\] \\
(d) 12
\end{tabular} \& \[
\begin{gathered}
\hline \text { B1 } \\
6
\end{gathered}
\] \& Maybe embedded In (c) FT until \(2^{\text {nd }}\) error ISW \\
\hline \begin{tabular}{l}
\[
\begin{aligned}
\& 3.44 \times 1.15 \\
\& =50.6(0 \text { euros }) \\
\& \\
\& \quad \begin{aligned}
40 \times 0.98 \& \\
\& =39.2(0 \text { euros })
\end{aligned}
\end{aligned}
\] \\
11.4(0 euros)
\end{tabular} \& \[
\begin{gathered}
\text { M1 } \\
\text { A1 } \\
\text { M1 } \\
\text { A1 } \\
\text { A1 } \\
5 \\
\hline
\end{gathered}
\] \& FT provided that both M marks are awarded \\
\hline \begin{tabular}{l}
4.(a)
\[
\text { (a) } \begin{aligned}
c \& =10 \\
a \& =7 \\
b \& =5 \\
c+b \& =15
\end{aligned}
\] \\
(b) \(4,7,12\) \\
(c) \(7 \mathrm{n}+1\)
\end{tabular} \& \[
\begin{gathered}
\text { B1 } \\
\text { B2 } \\
\\
\text { B2 } \\
8
\end{gathered}
\] \& \begin{tabular}{l}
If c incorrect then strictly a FT \\
FT their c-3 \\
FT their \(12-\mathrm{a}\) \\
FT their \(\mathrm{c}+\mathrm{b}\) \\
B1 \(1^{2}+3,2^{2}+3,3^{3}+3\) OR any two terms correct \\
OR 3, 4, 7 \\
B1 for 7n
\end{tabular} \\
\hline \begin{tabular}{l}
\[
\begin{aligned}
\& \text { 5. HH TT HT TH or } \mathrm{P}(\mathrm{HH})=1 / 4 \\
\& \text { or } \mathrm{P}(\mathrm{HT})+\mathrm{P}(\mathrm{TH})=2 / 4
\end{aligned}
\] \\
Conclusion that the statement is not true
\end{tabular} \& M1

A1
A1

3 \& $$
\begin{aligned}
& \text { Accept } \mathrm{P}(\mathrm{HH})=1 / 2 \times 1 / 2 \\
& \text { or } \mathrm{P}(\mathrm{HT})+\mathrm{P}(\mathrm{TH})=1 / 4+1 / 4
\end{aligned}
$$

\hline | 6.(a) Suitable axes, with uniform scales |
| :--- |
| Polygon with at least 3 vertices correctly plotted (vertical \& horizontal) |
| All 5 vertices of the polygon correct |
| (b) Entries 23, 50, 82, 98, 100 |
| (c) 20 (minutes) | \& B1

M1

A1

B1
B1

5 \& | Must be values only not ranges. |
| :--- |
| No polygon M0. Ignore bars. |
| Mid points - allow intention |
| SC1 for a correct polygon translated horizontally or all correct plots with no polygon (or curved polygon!) |
| Do not accept an interval |

\hline | 7.(a) $10 x+25-6 x+8$ $4 x+33$ |
| :--- |
| (b) $2 y^{3}+6 y$ |
| (c) n^{2} |
| (d) $(x=) 8$ | \& B1

B1
B2

B1
B1

6 \& | FT until $2^{\text {nd }}$ error |
| :--- |
| ISW |
| B1 for each term. If B2 penalise further incorrect working -1 |
| Or equivalent |
| Accept embedded answer |

\hline | 8. Mid points 4, 11, 18 $\begin{array}{r} 4 \times 15+11 \times 33+18 \times 12(=639) \\ \left(\sum f x / 60=\right) 639 / 60 \end{array}$ |
| :--- |
| 10.65 (days) rounded or truncated | \& B1

B1
M1

A1 \& | FT for their mid points from within group FT "their correctly evaluated $\sum f x$ " / 60 correctly evaluated. |
| :--- |
| Do not allow unsupported 11, but unsupported 10.6 or 10.7 awarded all 4 marks. |
| FT answer of (lower)7.65. or (upper) 13.65 |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline Paper 2 November 2010 Higher Tier \& \& Comments - (Page 3) \\
\hline \begin{tabular}{l}
15. (a) Sight any 1 of: \(29.5,30.5,14.5,15.5\) (value 29.5 to 29.99\() \times(\) value 14.5 to 14.99\() \times 20\) \\
Using min values to give an answer \(8555\left(\mathrm{~cm}^{2}\right)\) \\
Statement that it is always possible, based on working \\
\(\begin{aligned} \text { (b) } 30.5 \times 15.5 \times 20 \& (\text { or } 0.305 \times 0.155 \times 20) \\ 9455\left(\mathrm{~cm}^{2}\right) \& \left(0.9455\left(\mathrm{~m}^{2}\right)\right)\end{aligned}\)
\end{tabular} \& \[
\begin{gathered}
\text { B1 } \\
\text { M1 } \\
\text { A1 } \\
\text { E1 } \\
\\
\text { M1 } \\
\text { A1 } \\
6
\end{gathered}
\] \& Or alternative using division CAO. With correct conclusion Depends on A1. Maybe implied with use of inequalities \\
\hline \begin{tabular}{l}
\[
\begin{aligned}
\& \text { 16.(a) Sight of } 3 \mathrm{x} \text { OR } 7 \mathrm{x}(3 \mathrm{x}+2) \\
\& 3 \mathrm{x}+7 \mathrm{x}(3 \mathrm{x}+2)=250 \\
\& 21 \mathrm{x}^{2}+17 \mathrm{x}-250=0 \\
\& \text { (b) }\left\{-17 \pm \sqrt{ }\left(17^{2}-4 \times 21 \mathrm{x}-250\right)\right\} / 42 \\
\& \{-17 \pm \sqrt{ } 21289\} / 42 \\
\& 3.07 \text { (and }-3.88)
\end{aligned}
\] \\
(c) Substitution of (b) into \(x+3 x+2\) 14.28 or 14.3 (seconds)
\end{tabular} \& M1
A1
A1
M1
A1
A1
M1
A1
8 \& \begin{tabular}{l}
CAO. Convincing \\
Allow one error in substitution \\
CAO, must be to 2 dp \\
FT only if M1 awarded in (b) or for 3.07 used. Must be positive only
\end{tabular} \\
\hline \begin{tabular}{l}
17. Overall strategy, trig. with subtraction of areas \(126 / 360 \times \pi \times 4.2^{2}\)
\[
=19.3(9 \ldots . .)
\] \\
Use of Area triangle \(=1 / 2 \mathrm{ab} \sin \mathrm{C}\)
\[
\begin{aligned}
\& =1 / 24.2^{2} \sin 126 \\
\& =7.1\left(\ldots \mathrm{~cm}^{2}\right)
\end{aligned}
\] \\
Shaded area \(=12 .\left(26 \ldots \mathrm{~cm}^{2}\right)\)
\end{tabular} \& S1
M1
A1
M1
A1

A1

B1

7 \& | Or $0.35 \times \pi \times 4.2^{2}$ |
| :--- |
| Maybe embedded in later working |
| Or $\quad \cos 63=\mathrm{h} / 4.2 \quad$ Or $\sin 27=\mathrm{h} / 4.2 \quad(\mathrm{~h}=1.9 \ldots)$ |
| Full method to find base, Pythagoras or trig. $(3.74 \ldots \text { or } 7.48 \ldots)$ |
| Area triangle $=7.1\left(\ldots \mathrm{~cm}^{2}\right)$, maybe embedded in overall calculation |
| FT their areas provided at least M1 awarded of each separate area |

\hline
\end{tabular}

WJEC
245 Western Avenue Cardiff CF5 2YX
Tel No 02920265000
Fax 02920575994
E-mail: exams@wjec.co.uk website: www.wjec.co.uk

