GCSE MARKING SCHEME

MATHEMATICS - LINEAR

SUMMER 2013

INTRODUCTION

The marking schemes which follow were those used by WJEC for the Summer 2013 examination in GCSE MATHEMATICS - LINEAR. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.

Page

Paper 1 - Foundation Tier
 1

Paper 1 - Higher Tier 5
Paper 2 - Foundation Tier 9
Paper 2 - Higher Tier 12

PAPER 1 - FOUNDATION TIER

2013 Summer Linear Paper 1 (Non calculator) Foundation Tier	Marks	FINAL MARK SCHEME Comments
1. (a) (i) 32056	B1	
1. (a) (ii) ten thousand (and) one hundred and two	B1	
1. (b) (i) 44 and 23	B1	
1. (b) (ii) 12 and 41	B1	
1. (b) (iii) 36	B1	Accept $6^{2}, 6 \times 6$ but NOT 6
1. (c) (i) 6520	B1	
1. (c) (ii) 7000	B1	
1. (d) $1,2,3,6,9,18$	B2	B1 for any 4 correct factors and up to 1 incorrect
1. (e) (i) 1346	B1	
1. (e) (ii) 6314	B1	
Parts (i) and (ii) marked together 2. (a) (i) 11 (ii) 34	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \hline \end{aligned}$	
2. (b) 8000 OR 8 thousand OR thousand (s)	B1	B0 for 1 thousand OR 1000
2. (c) (0) $\cdot 75$ (0) $\cdot 77$ (0) $73,3 / 4,77 \%$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	Accept (0) $\cdot 73$, (0) $\cdot 75$, (0) $\cdot 77$ or equivalent For the third B1, F.T. incorrect decimals less than 1. B0 if given vertically.
$\begin{aligned} & \text { 2. (d) } 100 \times 19 \text { or } 100 \times 19.2 \text { OR } 100 \times 20 \\ & \text { OR } 99 \times 20 \text { OR } 98 \times 20 \text { OR } 98.6 \times 20 \text { OR } \mathbf{9 0} \times \mathbf{2 0} \\ & =1900 \text { OR } 1920 \text { OR } 2000 \text { OR } 1980 \text { OR } 1960 \underline{\text { OR 1800 }} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Good estimates F.T their estimates for simple calculations SC1 for unsupported 2000 Penalise extraneous working (towards actual answer) M0A0
3. (a) Value $=7 \times 9+4=67$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \end{gathered}$	Correctly substituted and correct attempt to evaluate. e.g. $7 \times 9+4=7 \times 13(=91)$ gets M0, A0. OR $7 \times 9+4=66$ gets M0, A0.
3. (b) number of the term $=(88-4) / 7$ $=12$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \end{gathered}$	For correct substitution with subtraction and division Allow embedded references to the correct answer.
All parts (a) - (b) marked at the same time 4. (a) Rugby 16, Soccer 12, Hockey 14, Tennis 8 Both axes labelled, e.g. frequency along one axis and R(ugby), S(occer), H(ockey),T(ennis) along other axis Anywhere within the base (inc.) of the corres. bar. Uniform scale for the frequency axis starting at 0 . Four bars at correct heights (bars must be of equal width). Can be in any order. (b) Rugby OR 'R'	B2 B2 B2 B1	Part (a) only \checkmark B1 for any two/three correct frequencies If frequencies score 0 , then give B1 for all 4 correct tallies. B1 if no scale but allow one square to represent 1 OR B1 if not labelled as 'frequency' If frequency scale starts with 1 at the top of the first square the starting at 0 will be implied for this axis. Condone frequency numbers alongside squares instead of at the top of squares. F.T. their table of frequencies B1 for any 2 or 3 correct bars on F.T. If no frequencies given in their working, penalise -1 for each incorrect frequency on their bars up to -4 (First and third B2s) Accept 16 and Rugby, but B0 for 16 only F.T. their frequencies

\begin{tabular}{|c|c|c|}
\hline 2013 Summer Linear Paper 1 (Non calculator) Foundation Tier \& Marks \& FINAL MARK SCHEME
Comments \\
\hline \begin{tabular}{l}
Both parts (a) \& (b) marked at the same time \\
10. (a) Overlay (viewed with diagram) \\
Plots \\
Line \\
10. (b) Any correct strategy, e.g. 10 times value at 37
\[
980(\mathrm{~N})
\]
\end{tabular} \& \begin{tabular}{l}
P1 \\
G1 \\
M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
Allow ONE error within a small square. \\
If the points are plotted incorrectly, allow a curve through points, line segments or line of best fit. \\
Any correct method using graph or table. \\
F.T. their graph. \\
Unsupported answers in the range 970 - 1000 inclusive get M1, A1.
\end{tabular} \\
\hline \begin{tabular}{l}
 \\
(ii) \(\frac{10}{16}\) of \(80 \quad\) OR \(\quad \frac{10}{16} \times 80\)
\[
=50
\] \\
(iii) \(80 \times 90(\mathrm{p})-50 \times(£) 1.20\) OR OR 7200(p) - 6000 (p) OR (£)72-(£)60
\[
=(\mathfrak{£}) 12 \text { or } 1200(\mathrm{p})
\]
\end{tabular} \& \begin{tabular}{l}
B2 \\
B2 \\
M1 \\
A1 \\
M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
B1 for at least 4 correct entries from 2nd and 4th columns \\
F.T. their table \\
B1 for a numerator of 10 in a fraction less than 1. \\
B1 for a denominator of 16 in a fraction less than 1. \\
Penalise \(\mathbf{- 1}\) once only for wrong notation, e.g. 10 out of 16 \\
F.T. their (b)(i) if a fraction less than 1 and \(\neq 1 / 2\). \\
Penalise incorrect cancelling of 10/16 here. \\
50 out of 80 gets the M1, A1 but 50/80 gets M1, A0. \\
F.T. full method of \\
\(80 \times 90\) p - 'their 50 ' \(\times £ 1.20\) \\
rounded up or down figure if their 50 is not a whole number \\
OR \(30 \times 90-50 \times 30(=2700-1500)\) \\
\(=1200\)
\end{tabular} \\
\hline \[
\begin{aligned}
\& \text { 12. (Weight of half the water) }=18-11=7(\mathrm{~kg}) \\
\& \begin{array}{l}
\text { (Weight of bucket) } \\
=18-2 \times 7 \\
=4(\mathrm{~kg})
\end{array}
\end{aligned}
\] \& \[
\begin{gathered}
\text { B1 } \\
\text { M1 } \\
\text { A1 }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Weight of water }=14(\mathrm{~kg}) \text { gets B1 } \\
\& \text { FT 'their 7' }
\end{aligned}
\] \\
\hline 13. (a)
\[
\begin{aligned}
(\mathrm{x}=) \& 180-90
\end{aligned}-36 \text { OR } 90-36
\] \& \[
\begin{gathered}
\hline \text { M1 } \\
\text { A1 }
\end{gathered}
\] \& \\
\hline \[
\begin{aligned}
\& \text { 13. (b) } 65+57+98=220 \\
\& 360-220 \text { OR sight of } 140\left({ }^{\circ}\right) \\
\& (y=) 40\left({ }^{\circ}\right)
\end{aligned}
\] \& \[
\begin{gathered}
\hline \text { B1 } \\
\text { M1 } \\
\text { A1 }
\end{gathered}
\] \& \begin{tabular}{l}
F.T. 'their 220' \\
Condone mathematical reversals, e.g. 220-360 if correct answer follows i.e. 140 in this case.
\end{tabular} \\
\hline 14. (a) All points plotted correctly \& B2 \& B1 for at least 3 correct plots Ignore line of best fit \\
\hline 14. (b) Positive \& B1 \& Do not accept descriptions. \\
\hline 14. (c) Line of best fit with points above and below \& B1 \& Line of best fit must be appropriate for the trend of points Do not accept a line drawn corner-to-corner of graph paper \\
\hline 14.(d) Their estimate, from their line of best fit \& B1 \& FT for their incorrect line of best fit OR only if no line shown then accept answers in the range (£) 430 to (£) 460 inclusive \\
\hline 14. (e) Evidence of takings / number of customers Approximately (£)5 (Accept \(£ 4.40\) to \(£ 5.50\) inclusive) \& M1

A1 \& | Accept for any pair of values in proportion or any pair of values on the line of best fit, or using the gradient of the line of best fit. For the idea of proportion of takings/customers, which candidates may find from one set of values or summations |
| :--- |
| Accept unsupported answers in the range |

\hline
\end{tabular}

Higher Tier Linear GCSE Mathematics Summer 2013 - Paper 1	Marks	FINAL MARK SCHEME Comments
1(a) $\mathrm{a}=125^{\circ} \mathrm{b}=55^{\circ} \mathrm{c}=52^{\circ}$	B3	B1 for each, $\mathbf{F T} \mathbf{b}=\mathbf{1 8 0}-\mathbf{a}$, e.g. $\mathrm{a}=128$ leads to $\mathrm{b}=52$, which $\mathrm{B} 0, \mathrm{~B} 1$.
2(a) All points plotted correctly	B2	B1 for at least 3 correct plots Ignore line of best fit
2(b) Positive	B1	Do not accept descriptions.
2(c) Line of best fit with points above and below	B1	Line of best fit must be appropriate for the trend of points Do not accept a line drawn corner-to-corner of graph paper
2(d) Their estimate, from their line of best fit	B1	FT for their incorrect line of best fit OR only if no line shown then accept answers in the range (£) 430 to (\mathfrak{f}) 460 inclusive
2(e) Evidence of takings / number of customers Approximately (£)5 (Accept $£ 4.40$ to $£ 5.50$)	M1 A1	Accept for any pair of values in proportion or any pair of values on the line of best fit, or using the gradient of the line of best fit. For the idea of proportion of takings/customers, which candidates may find from one set of values or summations Accept unsupported answers in the range
$\begin{array}{r} 3(\mathrm{a})(\mathrm{i})(12 / 30) \times 100 \\ 40(\%) \end{array}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \end{gathered}$	
3(a)(ii) 20(\%)	B1	FT $1 / 2$ (a)(i) provided it is a percentage
3(b) Fractions $15 / 30$ (or $1 / 2$) Fairtrade and 2/30 (or 1/15) non-Fairtrade	B2	B1 for either $15 / 30$ (=1/2) OR 2/30 Ignore any further working
4 Accurate perpendicular bisector constructed with all necessary arcs Accurate bisection with evidence of all necessary arcs and the angle $45^{\circ}\left(\pm 2^{\circ}\right)$ indicated	B1 B2	No marks if no arcs Accept 1 pair of arcs with a correct mid point B1 for pair of arcs on appropriate lines with an attempt at the next step, but some inaccuracy, OR Accurate bisection with evidence of all necessary arcs but the angle $45^{\circ}\left(\pm 2^{\circ}\right)$ NOT indicated

Higher Tier Linear GCSE Mathematics Summer 2013 - Paper 1	Marks	FINAL MARK SCHEME Comments
8(b) $15 \times 2 \times 3 \times 7$ or $15 \times 6 \times 7 \quad$ LCM is 630	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	Or equivalent correct expression for LCM CAO
8(c) Method with at least 2 correct prime factors Sight of correct factors (2, 2, 2, 3, 3, 13) $2^{3} \times 3^{2} \times 13$ or $2^{3} \cdot 3^{2} .13$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$	2 correct primes before $2^{\text {nd }}$ error Ignore 1s seen FT their factors (with at least one index >1 used). Do not ignore 1s.
9. Circumference or width $2 \times \pi \times 10$ or $\pi \times 20$ $62.8(\ldots \mathrm{~cm})$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	Or equivalent in metres Or equivalent in metres
Area rectangle 62.8×200 OR 0.628×2	M2	FT only if 'their 62.8 ' is clearly a circumference, i.e. from ' $\pi \times$ value', do not FT for 'area $\times 2(00)$ ' etc. M1 for appropriate calculation but units inconsistent and not corrected later
$12560 \mathrm{~cm}^{2} \quad$ OR $\quad 1.256 \mathrm{~m}^{2}$	A1	CAO Units must be given Allow ISW once correct answer seen
$\begin{array}{r} \text { 10.(a) } y^{2}=g+t \\ y=(\pm) \sqrt{ }(g+t) \end{array}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	FT from $\mathrm{y}^{2}=\mathrm{g}-\mathrm{t}$ to $\mathrm{y}=(\pm) \sqrt{ }(\mathrm{g}-\mathrm{t})$
$\begin{array}{ccc} \hline \text { 10(b) } & 3 y+w=10 y+15 \\ 3 y-10 y=15-w & \text { OR } & \\ -7 y-15=10 y-3 y \\ y=\frac{15-w}{-7} & \text { OR } & w-15=7 y \\ & \text { OR } & y=\frac{w-15}{7} \\ \hline \end{array}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	Includes correct expansion \quad FT until $2^{\text {nd }}$ error FT if total of y terms has not been simplified. Mark final answer
11. $6 l+8 w=55$ and $4 l+12 w=50$, OR alternative full strategy	S1	
Method to equate coefficients (allow 1 slip)	M1	FT for their logical simultaneous equations, including semi-perimeter $(3 l+4 w=55$ and $2 l+$ $6 w=50$), or equivalent inconsistent type of error, for M1,
First variable Method to find second variable	$\begin{aligned} & \text { A1 } \\ & \text { m1 } \end{aligned}$	FT from M1 to A1 provided answer positive FT provided 1st M1
Second variable	A1	FT from m 1 to A1 provided answer positive Width $=2(\mathrm{~cm})$ Length $=6.5(\mathrm{~cm})$ Alternative: S1 Trial \& improvement method working with all criteria M1 Two different trials attempting to match criteria M1 Two trials, one either side of desired (This may imply previous M1also) Al Width 2(cm) Al Length 6.5(cm) If final answers of 2(cm) and 6.5(cm), award S1 and B4
12(a) 275	B1	
12(b) Selecting Cat Boots UK with a reason, e.g. 'right skew', 'more calls longer than 10 minutes'	E1	
12(c) 25, 125, 300, 360	B2	B1 for any two correct values, OR FT cumulative from 1 error finding 2 further cumulative values accurately
12(d) 3 unique vertical plots correct at upper bounds All plots correct and joined, including to zero at $\mathrm{t}=0$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \end{gathered}$	Now only FT their cumulative table to (d) Ignore bars only if intention clear that line or curve is being used in (e)
12(e) (i) Median from cumulative graph (180 ${ }^{\text {th }}$)	B1	FT from their cumulative graph of joined points (Actual is approximately 11.5)
12(e)(ii) Attempt, (using the reading on the horizontal from 270 and 90) UQ - LQ IQR	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	FT for their cumulative graph of joined points (Actual is approximately 14 or $14.5-8$ or 8.5) (5.5 to 6.5)

PAPER 2 - FOUNDATION TIER

2013 Summer Linear Paper 2 (Calculator allowed) Foundation Tier	Marks	FINAL MARK SCHEME Comments
	B1 B1 B1 B1 M1 A1	For the 8 F.T. unless both 39.51 AND 75.84 are incorrect Any correct method for finding 20\%. F.T. their total. Ignore extra decimal places in their answer. If (£)31.76 not given then (£) 127.04 gains M1 A1
2. $\begin{array}{ccccc}120 \mathrm{~km} & 120 \mathrm{~m} & 120 \mathrm{~mm} & 120 \mathrm{~cm} \\ 80 \mathrm{~kg} & 80 \mathrm{~g} & 80 \mathrm{mg} & 800 \mathrm{~kg} \\ 2 \text { litre } & 10 \mathrm{~cm}^{3} & 200 \mathrm{ml} & 1 \mathrm{ml} \\ 4 \mathrm{~m}^{2} & 400 \mathrm{~cm}^{2} & 40 \mathrm{~mm}^{2} & 400 \mathrm{~cm}^{3}\end{array}$	B1 B1 B1 B1	
3. Readings 960 (g), 240 (g) One block weighs $(960-240) / 8$ $=90(\mathrm{~g})$	$\begin{gathered} \hline \text { B1 } \\ \text { M1 } \\ \text { A1 } \end{gathered}$	720 implies B1 FT readings
4. (a) chord tangent	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	
4. (b) (i) 12.1 (cm) to 12.5 (cm) inclusive	B1	
4. (b) (ii) Perpendicular through C	B1	Line should be between a line touching the left of A and between the p and a of 'passes'. Perpendicular does not need to cut AB
5. (a) (Viewed with diagram) Evidence of square counting 46-52 inclusive $276-312$ inclusive (m^{2})	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { B1 } \end{gathered}$	F.T. 'their $46-52$ ' $\times 6$ Unsupported answer in the range 276 - 312 gets 3 marks.
5. (b) Both lines Arc	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	Ignore extra lines that look like wrong attempts F.T. the end of their line and opposite curvature.
6. 7 by 4 rectangle 7 by 5 rectangle Two 3,4, 5 triangles Makes a valid net	$\begin{aligned} & \hline \text { B1 } \\ & \hline \end{aligned}$	Notes: Wrong dimensions gets B0; allow $\pm 2 \mathrm{~mm}$ Ignore 'flaps'. Must be a correct net that would produce the prism.
7. (a) $12 / 20,9 / 15$ and $6 / 10$ circled	B2	B1 for any 2 correct and up to 1 incorrect OR B1 for all 3 correct and 1 incorrect.
7. (b) 6 shaded sectors OR 2 unshaded sectors	B1	
7. (c) 1/4 I.S.W.	B2	B1 for equivalent , e.g. 10/40 Do NOT accept decimals
8. (a) $-8\left({ }^{\circ} \mathrm{C}\right) \quad \mathrm{Up} 2\left({ }^{\circ} \mathrm{C}\right)$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	Allow -2 ${ }^{\circ} \mathrm{C}$) Down
$\text { 8. (b) } \begin{aligned} & 53 / 100 \times 82 \\ & =43.46 \text { I.S.W. } \end{aligned}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \end{gathered}$	Any correct method for finding 53\%. C.A.O. 43.46% gets M1, A0. Unsupported 43, 43.4, 43.5 gets M1, A0
	B1 B1 B1	For the 6 and the 11 For any four other correct numbers on F.T. For the 8, C.A.O. $\mathrm{X}=8$ gets 3 marks.

2013 Summer Linear Paper 2 (Calculator allowed) Foundation Tier	Marks	FINAL MARK SCHEME Comments
9. (a) (i) Add 4 to the previous term	B1	Accept +4. B 0 for $n+4$ or $4 n+1$
9. (a) (ii) Divide the previous term by 3	B1	Accept $\div 3$. B0 for $n / 3$
9. (b) (i) (£) $t / 100$	B1	Accept $t \div 100$ or (0). $01 t$
9. (b) (ii) $m-10$	B1	Allow $m=m-10$
$\text { 9. (c) } \begin{aligned} & 3 x=18 \\ &(x=) \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	F.T. $3 x=b$, if b is a multiple of 3 then answer must be integer Accept embedded answers such as $3 \times 6-7=11$ $3 \times 6=18$ gets 0 , but $3 \mathrm{x}=18$ then $3 \times 6=18$ gets B 2
9. (d) (i) (5, 8) I.S.W. OR (5, 8), (6, 9), (7, 9), ...	B1	But B0 for (5, 8, 9, , 10, ...)
9. (d) (ii) ($x, \underline{x+3}$)	B1	B0 for ($\mathrm{x},+3$)
All parts (a) to (c) marked together 10. (a) (£) 58 10. (b) Sum of the amounts (416) Sum/8 (£) 52 10. (c) (i) (£) 37 10. (c) (ii) (£) 58	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	For attempt to add the numbers For dividing a number in the range $330-500$ by 8 . C.A.O. F.T. 'their mean' - 15 F.T. their range in part (a)
$\begin{aligned} & \text { 11. (a) } 9.7(\mathrm{~cm}) \\ & 9.7 \times 8 \\ &=77 \cdot 6(\mathrm{~km}) \end{aligned}$	$\begin{gathered} \hline \text { B1 } \\ \text { M1 } \\ \text { A1 } \end{gathered}$	Allow 9.5-9.9 FT 'their 9•7' Unsupported answers in the range 76-79.2 inclusive get 3 marks.
11. (b) $\frac{\text { Use Overlay }}{\text { Bearing } 147^{\circ}}$ from P Bearing 021° from Q Point (X)	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Allow $\pm 2^{\circ}$ Allow $\pm 2^{\circ}$ F.T. if at least M1 awarded Unambiguous dots within the boundaries of the overlay can get the M1s. One unambiguous dot within the 'box' gets all 3 marks. An unambiguous point of intersection does not require X .
$\begin{aligned} & \text { 12. e.g. Paper A } 1200 / 60 \\ & =20 \\ & \text { Paper B } 1200 / 30 \\ & =40 \end{aligned}$ For either 2 markers OR 4 markers. 6 markers needed in total.	\checkmark M1 A1 M1 A1 B1 B1	Accept $20 \times 60=1200$ for M1, A1 Accept $40 \times 30=1200$ OR 2×20 for M1, A1 Unsupported answer of ' 6 (markers)' gets 6 marks. Unsupported 'about 6' OR 'at least 6' gets B0, B0.
Look for - spelling - clarity of text explanations, - the use of notation (watch for the use of papers, markers, days being appropriate) QWC2: Candidates will be expected to - present work clearly, with words explaining process or steps AND - make few if any mistakes in mathematical form, spelling, punctuation and grammar and include units in their final answer QWC1: Candidates will be expected to - present work clearly, with words explaining process or steps OR make few if any mistakes in mathematical form, spelling, punctuation and grammar and include units in their final answer	$\begin{gathered} \text { QWC } \\ 2 \end{gathered}$	QWC2 Presents relevant material in a coherent and logical manner, using acceptable mathematical form, and with few if any errors in spelling, punctuation and grammar. QWC1 Presents relevant material in a coherent and logical manner but with some errors in use of mathematical form, spelling, punctuation or grammar. OR Evident weaknesses in organisation of material but using acceptable mathematical form, with few if any errors in spelling, punctuation and grammar. QWC0 Evident weaknesses in organisation of material, and errors in use of mathematical form, spelling

2013 Summer Linear Paper 2 (Calculator allowed) Foundation Tier	Marks	FINAL MARK SCHEME Comments
13. (a) Arcs to show 60° or 120° 120° angle drawn with either 60° or 120° labelled correctly	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Allow unlabelled angles of 60 as the supplementary angle will be 120 . A0 for incorrect labelling of the 60° and/or 120°, or no labelling. Watch out for when either end of the line to A is used as the radius of the arc.
13. (b) Correct intersecting arcs which are above and below the given line. Line bisector	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Candidates may draw 2 pairs of correct arcs above the line (or 2 pairs below the line) to get this M1.
14. (a) 85000/540 157.41	$\begin{aligned} & \hline \text { M1 } \\ & \text { A2 } \end{aligned}$	Mark final answer A1 for sight 157(.407407...) not to 2 dp as required
14. (b)(i) Wednesday Method, e.g. 13:50 +5 hours +7 hrs 51 minutes (0)2(:)41 or $2(:) 41 \mathrm{am}$	$\begin{gathered} \hline \text { B1 } \\ \text { M1 } \\ \text { M1 } \\ \text { A1 } \end{gathered}$	Do not penalise poor notation for M marks Award M2 for ' +12 hr 51 mins ' Notation for 24 or 12 hour time must be correct Do not accept 241pm The A mark depends on M2, award all marks for a correct answer
14. (b)(ii) (Speed) $434 \times 1.85 \quad$ (802.9 or 803) (Distance) $\times 7.75$ $6222(.475 \mathrm{~km})$ or $6223 .(25 \mathrm{~km})$	M1 M2 A2	M1 for ' $\times 7 \mathrm{hr} 45 \mathrm{~min}$ ' 'or $\times 465 \mathrm{~min}$ ' A1 for an answer of 3363.5 , OR $6215.5(\mathrm{~km})$ or other similar answers that would be correct apart from premature approximation
15. (a) 122	B1	
15. (b) (0 kelvin) -273.15 and (100 kelvin) -173.15	B2	B1 for either, or 2 negative answers with their 0 kelvin answer being 100 less than their 100 kelvin answer
15.(c) 340 kelvin to Celsius: working with 100 difference in both kelvin and Celsius 66.85 (degrees Celsius) Answer for Fahrenheit between 140 and 158 exclusive 6.85 tenths of $18 \quad$ OR $(6.85 / 10) \times 18$ 152(.33 Fahrenheit)	M1 A1 B1 M1 A1	e.g. sight of $40+26.85,126.85-60,340-273.15$ Look for response in the table. Accept 66.8, 66.9, 67 Look for evidence in the table. FT from rounding 66.85 (Celsius), e.g. 7 tenths of 18 Accept 153 from correct working Allow final B1, M1, A1 for a correct evaluation of 'their $66.85^{\prime} \times 1.8+32$ Penalise reversed answers - 1
16. Any three different pairs of congruent triangle identified	B3	B1 for each pair. Watch out for repeats. If letters are used then ignore the order of letters 'Watch out for usage of 4 letters which still make a triangle (eg ABED)'
17. $\begin{array}{r} 80 \times 600 \times 0.4(0) \\ =19200 \\ 19200-1200 \quad \text { OR } \quad 18000 \text { red buttons } \\ \div 500 \text { AND } \div 80 \quad \text { OR } \quad \div 40000 \\ 0.45 \text { or } 45 \% \end{array}$	M2 A1 B1 m2 A1	M1 for product of any two seen. Or equivalent calculation FT 'their 18000' provided M2 awarded ml for $\div 500$ or $\div 80$ Accept 36 buttons per bag as evidence for m 1 CAO

Higher Tier Linear GCSE Mathematics Summer 2013 - Paper 2	Marks	FINAL MARK SCHEME Comments
$\begin{aligned} & 1.38 \times 3+39 \times 9+40 \times 5+41 \times 3(=788) \\ & \text { Their } \sum \mathrm{fx} / 20 \\ & \quad 39.4(\text { ISW }) \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { m1 } \\ & \text { A1 } \end{aligned}$	CAO Must be from a correct method. Need to check method to watch for incorrect $\div 4$
2. $1 / 2 \times 1 / 6$ $1 / 12$ or $0.083(3 \ldots)$ or equivalent	M1 A1	OR $3 / 6 \times 1 / 6$. Accept $1 / 6$ written as 0.166 .. or 0.17 , NOT 0.16 OR 3/36
$\begin{array}{r} \hline \text { 3(a) 85000/540 } \\ 157.41 \end{array}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A2 } \end{aligned}$	Mark final answer A1 for sight $157(.407407 \ldots$) not to 2 dp as required
3(b)(i) Wednesday Method, e.g. 13:50 $+5 \text { hours }$ $+7 \mathrm{hrs} 51 \text { minutes }$ (0)2(:)41 or $2(:) 41 \mathrm{am}$	$\begin{gathered} \hline \text { B1 } \\ \text { M1 } \\ \text { M1 } \\ \text { A1 } \end{gathered}$	Do not penalise poor notation for M marks Award M2 for ' +12 hr 51 mins ' Notation for 24 or 12 hour time must be correct Do not accept 241 pm The A mark depends on M2, award all marks for a correct answer
3(b)(ii) (Speed) 434×1.85 (Distance) $\times 7.75$ $6222(.475 \mathrm{~km})$ or $6223.25(\mathrm{~km})$ Look for - spelling - clarity of text explanations, - the use of notation (watch for the use of ' $=$ ', and units being appropriate) QWC2: Candidates will be expected to - present work clearly, with words explaining process or steps AND - make few if any mistakes in mathematical form, spelling, punctuation and grammar and include units in their final answer QWC1: Candidates will be expected to - present work clearly, with words explaining process or steps OR - make few if any mistakes in mathematical form, spelling, punctuation and grammar	M1 M2 A2 QWC 2	M1 for ' $\times 7 \mathrm{hr} 45 \mathrm{~min}$ ' or ' $\times 465$ mins' A1 for an answer of 3363.5 , OR $6215.5(\mathrm{~km})$ or other similar answers that would be correct apart from premature approximation QWC2 Presents relevant material in a coherent and logical manner, using acceptable mathematical form, and with few if any errors in spelling, punctuation and grammar. QWC1 Presents relevant material in a coherent and logical manner but with some errors in use of mathematical form, spelling, punctuation or grammar . OR Evident weaknesses in organisation of material but using acceptable mathematical form, with few if any errors in spelling, punctuation and grammar. QWC0 Evident weaknesses in organisation of material, and errors in use of mathematical form, spelling, punctuation and grammar.
4(a) 122	B1	
4(b) (0 kelvin) -273.15 and (100 kelvin) -173.15	B2	B1 for either, or 2 negative answers with their 0 kelvin answer being 100 less than their 100 kelvin answer

Higher Tier Linear GCSE Mathematics Summer 2013 - Paper 2	Marks	FINAL MARK SCHEME Comments
4(c) 340 kelvin to Celsius: working with 100 difference in both kelvin and Celsius 66.85 (degrees Celsius) Answer for Fahrenheit between 140 and 158 exclusive 6.85 tenths of $18 \quad$ OR $(6.85 / 10) \times 18$ 152(.33 Fahrenheit)	M1 A1 B1 M1 A1	e.g. sight of $40+26.85,126.85-60,340-273.15$ Look for response in the table. Accept 66.8, 66.9, 67 Look for evidence in the table. FT from rounding 66.85 (Celsius), e.g. 7 tenths of 18 Accept 153 from correct working Allow final B1, M1, A1 for a correct evaluation of 'their 66.85 ' $\times 1.8+32$ Penalise reversed answers - 1
$\begin{array}{rlrl} \hline 5(a) 8 x-3 x=29 & +11 & & \\ & 5 x=40 & \text { OR } \quad x=40 / 5 \\ x=8 \end{array}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	FT until 2 ${ }^{\text {nd }}$ error Must be simplified
5(b) 7(x +7)	B1	CAO
5(c) $\mathrm{x}(\mathrm{x}-10)$	B1	CAO
5(d) $2 \mathrm{x}^{2}+12 \mathrm{x}$	B2	Must be as one complete expression. Mark final answer B1 for each term
6. Any three different pairs of congruent triangles identified	B3	B1 for each pair. If letters are used then ignore the order of letters Watch for repeats!
7. $\begin{aligned} & \mathrm{a}^{2}=6.4^{2}-4.7^{2} \\ & \mathrm{a}^{2}=18.87 \quad x \text { is } \sqrt{ } 22.9 \text { to } \sqrt{ } 23.28 \end{aligned}$ x is $4.78 \ldots$ to $4.8(249 \ldots)$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \\ & \text { A1 } \end{aligned}$	Accept sight of $a=4.3(439 \ldots)$ FT 'their a^{2} ' or 'their a' provided M1 awarded or M1 for x from $\sqrt{ } 66.82$ to $\sqrt{ } 67.46$ (when ' $a^{2}=63.05$ ' or ' $a=7.94 .$. ') Accept 5 from correct working $F T$ from $a^{2}=63.05$ is $x=8.174 \ldots$ to 8.2134..
8. $\begin{gathered} 80 \times 600 \times 0.4(0) \\ =19200 \\ 19200-1200 \quad \text { OR } 18000 \text { red buttons } \\ \div 500 \text { AND } \div 80 \quad \text { OR } \quad \div 40000 \\ 0.45 \text { or } 45 \% \end{gathered}$	M2 A1 B1 m2 A1	M1 for product of any two seen. Or equivalent calculation FT 'their 18000 ' provided M2 awarded m 1 for $\div 500$ or $\div 80$ Accept 36 buttons per bag as evidence for m 1 CAO
9. Any two lines drawn correctly Correct region identified	$\begin{aligned} & \text { B2 } \\ & \text { B1 } \end{aligned}$	B1 for any 1 line drawn correctly CAO
10(a) All correct entries	B2	B1 for 2 pairs of branches correct
$\begin{aligned} 10 \text { (b) } 0.7 \times 0.3 & \\ & +0.3 \times 0.7 \quad=0.42 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { M1 } \\ \text { A1 } \end{gathered}$	FT from their tree, probabilities must be <1

Higher Tier Linear GCSE Mathematics Summer 2013 - Paper 2	Marks	FINAL MARK SCHEME Comments
11. Strategy: relevant sketch showing understanding of centre of the road and vertical buildings and angle(s) of elevation shown in the correct positions $\begin{aligned} & (x=) \tan 72 \times 10 \quad \text { OR } \quad(y=) \tan 38 \times 10 \\ & (x=) 30.7768 \ldots . \end{aligned}$ $\text { Answers in the range } 22.9(\mathrm{~m}) \text { to } 23(\mathrm{~m})$	$\begin{aligned} & \text { S1 } \\ & \text { M2 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	Ignore placement of 20 m in the sketch This S1 may be implied by relevant working M1 for $\tan 72=\mathrm{x} / 10$ or $\tan 38=\mathrm{y} / 10$, OR M1 for $\mathrm{x}=\tan 72 \times 20$ or $\mathrm{y}=\tan 38 \times 20$ FT use of 20, answers 61.55... AND 15.6257... FT use of 20 , answer of $46(\mathrm{~m})$ or $45.9(3 \mathrm{~m})$ Accept sine rule as an equivalent method. Incorrect placement of the angles leads to: Either SO sketch appropriate but angles at top vertices M1 for $x=10 / \tan 72$ OR $y=10 / \tan 38$ A1 for $x=3.249 \ldots$.. AND $y=12.799 \ldots$ Al for 9.55... (m) rounded or truncated $\frac{O r}{20}$ 20 used, not 10, then SC2 for an answer of 19.1... (m), or SC1 for 6.498... or $25.598 \ldots$ Do not accepted unsupported answers, as scale drawing are not accepted, max S1 for meeting the criteria for the sketch
$\begin{aligned} & \text { 12. } 24 x^{2}-6 x+20 x-5 \text { AND } \\ & 24 x^{2}-3 x+40 x-5 \text { OR }-24 x^{2}+3 x-40 x+5 \end{aligned}$ Clearly reducing to $-6 x+20 x+3 x-40 x$ to $-23 x$	B3 B1	B2 for either expansion of pair of brackets correct B1 for one slip in both expansions CAO. Convincing from correct working
$\begin{aligned} & \text { 13(a) } \mathrm{x} / 0.8=4.5 / 3 \text { OR } \mathrm{x}=(4.5 / 3) \times 0.8 \text { OR } \mathrm{x}=1.5 \times 0.8 \\ & \mathrm{x}=1.2(\mathrm{~cm}) \\ & \mathrm{y}=(3 / 4.5) \times 2.4 \text { OR } \mathrm{y}=2.4 / 1.5 \text { OR } \mathrm{y}=2.4 \times 0.8 / \mathrm{x} \\ & \mathrm{y}=1.6(\mathrm{~cm}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Or equivalent Or equivalent FT their x
$\begin{aligned} & \text { 13(b) Area scale factor } 1.5^{2} \text { or } 2.25 \text { or } 9 / 4 \\ & 1.5^{2} \times 3.4(0) \quad \text { OR } 2.25 \times 3.4(0) \end{aligned}$ (£)7.65	$\begin{aligned} & \hline \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Or equivalent FT for M1 only incorrect evaluation of 1.5^{2} CAO
14. Interpreting that 75% equates to 5 billion 5 billion / 3 or equivalent (e.g. $\div 75 \times 25$) 1666666 666.66... or 1.66.. billion 1.7×10^{9}	$\begin{gathered} \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \text { B2 } \end{gathered}$	Accept rounded answers. Do not accept truncated answers FT 'their 1666666 666.66...' provided it is >1 million B1 for an answer with attempt at standard form but not correctly expressed, e.g. 16.667×10^{8}, 1.67×10^{9} If no marks SCl for 5 billion expressed as 5×10^{9}
$\begin{gathered} \text { 15(a) }(2 x+5)(4 x-1) \\ x=-5 / 2 \text { AND } x=1 / 4 \end{gathered}$	$\begin{aligned} & \hline \text { B2 } \\ & \text { B1 } \end{aligned}$	B1 for ($2 \mathrm{x} \ldots 5$)($4 \mathrm{x} \ldots$. $)$ FT from their pair of brackets, equivalent difficulty No marks for the use of the quadratic formula, or trial \& improvement
$\begin{aligned} & 15(\mathrm{~b})\left\{5+\sqrt{ }\left(-5^{2}-4 \times 3 \mathrm{x}-7\right)\right\} / 2 \times 3 \\ &=\{5 \pm \sqrt{ } 109\} / 6 \\ & 2.57 \text { and }-0.91 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	For substitution, allow one slip CAO Accept method of completing square
16. Correct sketch, reflection in the x -axis	B1	

Higher Tier Linear GCSE Mathematics Summer 2013 - Paper 2	Marks	FINAL MARK SCHEME Comments
17(a) ($\mathrm{x}=$) -2, 3 and 5	B2	Mark final answer B1 for any one correct answer Accept embedded answers
17(b) Realising that the line needed is $y=-5 x+10$ Method to find points to plot for $\mathrm{y}=-5 \mathrm{x}+10$ Accurate graph of $y=-5 x+10$ drawn x-value of intersection from their graph $(-1.4)(\pm 0.1)$	$\begin{aligned} & \mathrm{M} 1 \\ & \text { m1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	E.g. table with coordinates for 2 correct points CAO. Remember this depends on M1 If $y=5 x+10$ selected leading to answers of -2 and $1.5(\pm 0.1)$, SC1 for each of -2 and $1.5(\pm 0.1)$ If $y=5 x-10$ selected leading to answers of $2.7(\pm 0.1)$ and $5.8(\pm 0.1)$, SC1 for both answers given
18. Answers that round to $203.6\left({ }^{\circ}\right)$ or $336.4\left(^{\circ}\right)$ Then: the other angle with no other values	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	Accept 204 or 336 FT 540 - first answer. FT must be in required range. Accept embedded answers
19. $6.4^{2}=4.6^{2}+5.8^{2}-2 \times 4.6 \times 5.8 \times \cos X$, or $4.6^{2}=6.4^{2}+5.8^{2}-2 \times 6.4 \times 5.8 \times \cos Y$, or $5.8^{2}=6.4^{2}+4.6^{2}-2 \times 6.4 \times 4.6 \times \cos Z$, or Correct rearrangement $74.967\left(.^{\circ}\right)$ or $43.95\left(. .^{\circ}\right)$ or $61\left(.07 \ldots .^{\circ}\right)$ Use of area $=1 / 2 \mathrm{ab} \operatorname{sinC}$ with appropriate substitution $1 / 2 \times 4.6 \times 5.8 \times \sin 75$, or $1 / 2 \times 6.4 \times 5.8 \times \sin 44$, or $1 / 2 \times 4.6 \times 6.4 \times \sin 61$ $12.9\left(\mathrm{~m}^{2}\right)$ Volume compost $=0.12 \times 12.9$ or 12×129000 $1.5\left(46 . . \mathrm{m}^{3}\right) \text { or } 1546017\left(.335 \mathrm{~cm}^{3}\right)$	M1 m1 A1 M1 A1 M2 A1	This implies the first M1 With appropriate rounding, 75, 44, 61 FT their $75,44,61$ if clear this is the included angle as appropriate for M1 only. Not for use of spurious angles (needs to be from calculation) Accept $12.883 \ldots$ or appropriately rounded, accept 13 FT their 12.9 provided M1 for cosine rule and M1 for $1 / 2 \mathrm{abSinC}$ awarded. M1 for $12 \times$ their 12.9 , or sight the product with the digits 12 and their 129 , may be implied by an answer with correct digits but incorrect place value Or correct FT response from M2 Accept reasonable rounding or truncation If an incorrect unit is given then A 0

WJEC
245 Western Avenue
Cardiff CF5 2YX
Tel No 02920265000
Fax 02920575994
E-mail: exams@wjec.co.uk website: www.wjec.co.uk

