MS2WELSH JOINT EDUCATION COMMITTEE\$2.00CYD-BWYLLGOR ADDYSG CYMRU

General Certificate of Secondary Education

Tystysgrif Gyffredinol Addysg Uwchradd

MARKING SCHEMES

SUMMER 2006

MATHEMATICS PILOT SCHEME

INTRODUCTION

The marking schemes which follow were those used by the WJEC for the 2006 examination in GCSE Mathematics Pilot Scheme. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

The WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.

	GCSE Pilot 2006		Final Mark Scheme
	Mathematics Foundation Tier	Mark	Comments
	Paper 1		
1.	(a) 12 22 102 122 202 212 221	B1	CAO
	(b) (i) 111	B1	CAO
	(ii) 34	B1	CAO
	(iii) 72	B1	CAO
	(iv) 8	B1	CAO
	(c) (£) $115,750(.00)$	B1 6	CAO
2.	(a) 4 correct lines	B2	B1 for 2 correct lines only.
			B1 for 4 correct lines + additional line(s)
	(b) Complete figure	B2	-1 for each incorrect vertex, max. -2
		4	
3.	(a) Friday	B1	CAO
	(1) 10	D1	
	<i>(b)</i> 19	BI	CAO
	(a) Tuesday and Wednesday	D 1	CAO
	(c) Tuesday and Wednesday	DI	CAO
	(<i>d</i>) 20, 14, 6, 19, 23,	M1	Attempt to add at least 4 of the numbers
	82	Δ1	FT for 63 + 'their (b)'
	02	5	
4.	(a) (i) 24	B1	CAO
	(ii) 11	B1	CAO
	(b) (i) $4 \times 8 + 45$	M1	Must attempt to multiply and add
	(£) 77	A1	CAO
	(ii) $8N = 61 - 45$	M1	
	N = (2 hours)	Al	CAO
5	(z) (z) (z)	0 D1	
э.	(a) (1) 49 (ii) 17	BI D1	
	(11) 17 (11) 22	D1	
	(111) 32	DI	CAU
	(b) $20 \times 60 / 100 \text{ OR } 10\% = (f)6$	M1	
	(b) $20 \times 007100 \text{ GR} 1070 \text{ (2)}0$ (f) 12 ISW $20\% = (f)12$	A1	CAO
	(c) (i) (0) $\cdot 75$	B1	
	$(0) \cdot 6(0)$	B1	
	(i) $60\% 0.7^{3/4}$	B1	FT from (i)
		8	
6.	120 125 125 125 130 130 134 145 155	M1	
	Mode (\pounds) 125	B1	CAO
	Median (t) 130	Al D1	
	Kange (±) 35		CAU
7	Angle $CAB = 57^{\circ}$	4 D1	$\pm 2^{\circ}$ Cinc D1 if hoth angles are served.
/•	Angle $\Delta CB = 63^{\circ}$	BI R1	± 2 Give B1 if DOIN angles are correct
	I = 0.5		± 2 but reversea.
	AB = 11.6cm	B1	+ 2mm FT from their diagram
		3	

		GCSE Pilot 2006		Final Mark Scheme
	Ma	thematics Foundation Tier	Mark	Comments
		Paper 1		
8.	Estin	nate for height of man	B1	1.5 m to 2.5 m (5ft to 7ft)
	Five	equal spaces shown above		
	the n	nan		
	OR			
	heigh	f_{1} of man = 3 cm height of tower	B1	Allow +2mm for the height of man and height
	= 180	em	51	of tower
	OR			
	ratio	18·3 6·1 3·18 1·6 seen		
	iuno	10.5 0.1 5.10 1.0 5 00 fl.		
	$6 \times t$	heir height	M1	
	$6 \times \text{their height}$ Height of tower		A1	FT for their height
	Height of tower		<u>1</u>	Answer only BO BO MO AO
0	$(a) = x - 70^{\circ}$		т D1	
9.	(a)	x = 70 $y = (180^{\circ} - 140^{\circ})$	DI M1	CAU
		y = (180 - 140)		
		$y = 40^{-1}$	AI	F1 for $180^\circ - 2 \times \text{their } x^\circ$
	(1)		M	
	<i>(b)</i>	$t = 180^{\circ} - 90^{\circ} - 76^{\circ} \text{ or } 90^{\circ} - 76^{\circ}$		
		$t = 14^{\circ}$	AI	CAU
		2 (00 (500 + 1100 + 1250)	M1	
	(<i>C</i>)	$360^{\circ} - (50^{\circ} + 110^{\circ} + 125^{\circ})$		
		/50	AI A1	
		$p = 105^{\circ}$		F1 Answer only 75° SC1
10	()	5 4 0.86 (5 2.44)	8 M1	
10.	(a)	$5 - 4 \times 0.80$ (5 - 3.44)		
		£1.36 1.36 136p	AI	
	$(\mathbf{I}_{\mathbf{i}})$	$10 (2.25 \pm 1.28) (10 2.52)$	M1	
	(D)	10 - (2.23 + 1.28) $(10 - 5.33)$		
		10.4/ 0.4/ 04/p	AI	
		17 0	M1	
	(<i>C</i>)	$1/\times 8$		
		(t) 136	AI	CAO
		217/7	M1	
	(d)	21///		
		31	Al	CAU
11		(i) 22	0 D1	Accent embedded enginera in parts (i) to (iii)
11.	(a)	(1) 23 (3) 24		Accept embedded answers in parts (1) to (111)
		(11) 24 (iii) $2x = 6$		
		(111) $3x = 6$	BI D1	
		x = 2	BI	F 1 If of the form $ax = b$
	(\mathbf{L})	(i) <u>11.</u>	D1	CAO
	(D)	$\begin{array}{ccc} (1) & 1 \\ (ii) & 1 \\ (iii) & 1 \\ (iii) \\ (iiii) \\ (iii) \\ (ii$		
		$\begin{array}{ccc} (11) & r + \Im S \\ (11) & 5 + 1 \\ \end{array}$	BI	Accept $1r + 5s$ D1 for 5 d or 11 c
		(111) $5a - 11c$	В2	$B1 10\Gamma 5a 0\Gamma - 11C$
			D2	
	(<i>C</i>)	(1) $-12 + 14$	B2	B1 tor -12 or $+14$
		$\frac{2}{2}$	D2	
		(11) $W = 20 + 12$	B2	B1 tor +12
		= 32		
	(d)	3(x+5)	B1	CAO
			13	

	GCSE Pilot 2006			Final Mark Scheme
	Ma	thematics Foundation Tier	Mark	Comments
		Paper 1		
12.	(a)	-1	B1	CAO
	(\mathbf{h})	Plot 2 correct points OR	B1	
	(D)	3 correct points taken from	DI	
		their table		
		Draw line	B1	CAO
			3	
13.	(<i>a</i>)	All points plotted correctly	B1	B1 for at least 3 correct plots,
				B1 for 5 correct points joined by lines
				BI II lesis reversed.
				Ignore line of best In.
	(b)	Negative	B1	Do not accept descriptions.
		5	3	
14.	(a)	$20 \times 15 \times 10$	M1	
		$3000 (cm^3)$	A1	CAO
	(1)	2000/100	N/1	
	(<i>b</i>)	3000/100		FT from (a)
		50 (cm)	4	
15.	$\frac{1}{2} \times \frac{1}{2}$	5 × 6	M1	Attempt $\frac{1}{2}$ base x height seen
	15	-	A1	e.g. 2.5×6
	cm^2		U1	
			3	
16.	(a)	$20 \times 200/100$	M1	M1 A1 for 1.2×200
		40		FT
		(£) 240	AI	r I
	(b)	(i) 100/5	M1	Accept Nigel (£)20 Paul (£)80 for M1
		Nigel (£)80 Paul (3)20	A1	CAO
		(ii) No	B1	May be implied in the explanation.
		4:1, OR 36, 9 matches OR	E1	FT their (b)(i) logic.
		Nigel 4, Paul 1, then repeat	/	'Nigel should go more' is insufficient.
		CR NININIPNININIP OR		
17.	(a)	Method that produces at least 2	M1	
	(4)	correct prime factors.		
		Sight of correct factors.	A1	Ignore 1s seen
		(2,2,2,3,3,5)		
		$2^3 \times 3^2 \times 5$ or $2^3 \cdot 23^2 \cdot 5$	B1	FT their factors (with at least one index >1 used).
	(\mathbf{L})	a a add namona index 5 is not	E1	Do not ignore 1s
	(D)	e.g. odd powers, index 5 is not	<u> </u>	
18.	(a)	Bisector of angle CAB	B1	+2°
10.	(4)	Arc centre B radius 6 cm	B1	+2 mm
		Shaded area	B1	FT for the intention of bisector and arc.
	<i>(b)</i>	Enlargement ¹ / ₂	B1	
		Correct position	B1	
10	0.12	+0.34	<u> </u>	
19.	0.12 0.46	46/100 46%	A1	
	5 10		2	

		GCSE Pilot 2006		Final Mark Scheme
	Ma	thematics Foundation Tier	Mark	Comments
		Paper 2		
1.	<i>(a)</i>	39.92	B1	CAO
		64.65	B1	CAO
		18.35	B1	CAO
		122.92	B1	FT for one error
			M1	
	(b)	$40 \div 2.56$. 1	
		15	Al	CAO Answer only 15.6(25) MI A0
			0 D1	
2.	(a)	Pentagon	BI D1	Accept names written at the side of the diagrams.
		Hexagon	BI D1	Accept a list written in order if completely correct.
		Transien	BI D1	
		Irapezium	BI D1	
	(\mathbf{b})	Diamatar	DI D1	
	(D)	Tangant	DI D1	
		Chord		
3	(a)	F	/ B1	$C \land O$ B1 for diagrams E and H clearly
5.	(u)	Г Н	B1	CAO marked with no other diagram
		11	DI	CAO marked
	(\mathbf{h})	P S	B 1	
	(\mathcal{D})	1 0	3	
4.	(a)	Seven thousand(s) nine hundred	B1	Words only
	(00)	and four	21	B0 for seven thousandths etc.
	<i>(b)</i>	(i) Shade any four squares	B1	
		(ii) $\frac{7}{16}$ ISW	B1	CAO B1 for seven sixteenths
				B0 for seven out of sixteen
	(<i>c</i>)	8753	B1	CAO
		3578	B1	CAO
			5	
5.	Five	days correct	B4	-1 once only for use of a different symbol
	(2	3 $1\frac{1}{2}$ $2\frac{1}{4}$ $1\frac{3}{4}$ symbols)		B3 Four days correct
				B2 Three days correct
				B1 Two days correct
			4	
6.	(<i>a</i>)	Draw pattern OR $8 + 10 + 12$	M1	One error allowed for M1
		30	Al	CAO. Answer 6 more gets M1 A0.
	(1)	$(2 + 2) \times ($	M1	
	(<i>b</i>)	$(3+8) \times 6$		
		00	AI	CAU
	(a)	(i) \mathbf{P} lot $\mathbf{P}(2,5)$	R 1	P and O need not be shown on the diagram
	(\mathcal{C})	(1) $\Gamma(0, \Gamma(-3, -3))$ Plot O(-4, 2)	R1	Γ and χ need not be shown on the diagram.
		(ii) $D(24)$	R1	No marks awarded when the coordinates are reversed
		(II) $D(2,4)$	וע	The number of the containance of the containances are reversed.
			7	
L			,	1

	GCSE Pilot 2006			Final Mark Scheme
	Ma	athematics Foundation Tier	Mark	Comments
		Paper 2		
7.	<i>(a)</i>	A at or very near 1	B1	
		B at or near $1/6$	B1	$>0, < \frac{1}{4}$
		C at or very near 0	B1	
		2		
	<i>(b)</i>	$56 + 54 + \ldots + 85$ (828)	M1	
		'their total' ÷ 12	m1	
		69	A1	CAO
			6	
8.	(a)	101 25	B1	САО
0.	(u)	149.40 - 101.25	M1	
		(f) 19 15	A1	FT
		(1)40.15	m1	
		48.15 ÷ 9	A1	FT
		(t)5.35		
			M1	
	(b)	12×650		Answer only (£)572 OR (£)728 gets M1 A0
	(0)	100	A1	CAO
		(£)78 (ISW)	7	
9.	(a)	14 books	B1	CAO
	(u)	2 left	B1	CAO
		2 1010	DI	
	(h)	(i) 19	B1	CAO
	(b)	(ii) 1.5625 or 1.563 or 1.56	B2	B1 for sight of 0.64 B0 for answer only 1.6
		(ii) 1.5025 of 1.505 of 1.50	B1	Di foi signi oi 0.04. Do joi unswer only 1.0
		(III) 10 OK 27 422	B1	CAO
		+32	B1	
		(1V) 4.70	DI	CAO
	(a)	$^{2}/_{0}$ of 500 - 200	B1	CAO
	(\mathcal{C})	$\frac{1}{501500} = 200$	B1	CAO Accept the use of
		7401500 - 125	M1	FT desimals on
		Exaction left = $\frac{175}{15}$ (17)	A1	
OD		Fraction left – 7_{500} is w (7_{20})		percentages but
UK		8/ 5/	B1	the final answer
		$\frac{1}{20} + \frac{1}{20}$	B1	CAO must be given as
		$\frac{1}{20}$	M1	a fraction.
		Fraction left $1 - \frac{1}{20}$	Δ1	FT
		$/_{20}$ 15 W	12	
10	(a)	(i) Labels on axes	R1	
10.	(1)	Uniform scales	M1	
		Correct line	Δ1	CAO
		(ii) 43.2 or	R1	
		(II) 45.2 OI	DI	
		reading from their line		
	(h)	(i) 45 (miles)	R1	Accept 44 or 46 (miles)
	(\mathbf{D})	(i) 45 (iiiiC5) (ii) 75 (minutes) 1h 15m		$P(f_{or} = 1.15/h)$
		(ii) 73 (iiiiiutes) III 13 III (iii) 20 (miles)		$DU_{j}UI_{j}IIJ(n)$
		(11) 20 $(1111es)$		
			/	

	GCSE Pilot 2006			Final Mark Scheme
	Ma	thematics Foundation Tier	Mark	Comments
		Paper 2		
11.	(<i>a</i>)	(i) 057°	B1	$\frac{+2^{\circ}}{20}$ 57° is B0
		(11) Actual length = 20×8 (m)	MI	M1 for 20 × 'their length'
		156 (m) to 164 (m)	AI	Allow ± 2 mm in length of TB
	(\mathbf{h})	Line from Λ on correct bearing $\pm 2^{\circ}$	M1	One line correct one incorrect and the two lines
	(D)	Line from B on correct bearing $\pm 2^{\circ}$	M1	intersecting gets $M0 M1 \Delta 1$
		Lines intersect at P	A1	One point in the correct region gets M1 M1 A1
			6	
12.	<i>(a)</i>	450×9.8	M1	
		4410	A1	CAO
	(b)	$627.2 \div 9.8$	M1	
		(£)64		CAU
13	(a)	$\times = 48^{\circ}$	81	CAO
1	(4)	$v = 37^{\circ}$	B1	CAO
		<u> </u>		
	<i>(b)</i>	Exterior angle $=360/8$ (45)	M1	M1 for any correct method.
				$(2 \times 8 - 4) \times 90/8, 1080/8$
		Interior angle = 135°	A1	CAO
	()		4	
14.	<i>(a)</i>	2x + 5 + 2x + 5 + 3x + 3x		CAO
		$10x \pm 10$ 15 w	AI	CAU
	(b)	8x + 4x = 7 - 4	B1	Stop at second error
	(-)	12x = 3	B1	FT
		$x = \frac{3}{12}$ ISW (¹ / ₄ 0.25)	B1	FT
				Accept embedded answers for (b) and (c)
			D 1	Stop at second error
	(C)	10x - 15 = 50 or $2x - 3 = 50/5$	BI D1	ET
		10x = 65 $2x = 13x = \frac{65}{2} x = \frac{13}{2}$	B1	
		$\begin{array}{ccc} x - & & \\ 10 & & & \\ ISW & & ISW \end{array}$	DI	
		(65) (65)		
	(d)	$2 \times (x-3)$	B2	B1 for partial factorisation
			10	$2(x^2 - 3x)$ or $x(2x - 6)$ or $2x(x)$ or $2x(3)$
15	TD ²	$-62^2 - 72^2$	10	$1 - \frac{1}{2} + 2 \frac{7^2}{7^2} $
15.	$I K^{-}$ $T P^{2}$	= 0.5 - 5.7 = 26		Give M1 for $1R^2 + 3.7^2 = 6.3^2$
	TR	= 51 or 5 (cm)	A1 A1	FT
OR	Î	5.1 of 5 (cm)	111	
	cos S =	= 3.7/6.3 sin T = $3.7/6.3$	M1	Complete method for finding TR must be seen.
and	TR = 6	.3 sinS TR = 3.7 tan S TR = $3.7/\tan T$	A1	
	TR = 5	.1	A1	
	TR = 5	.1 or 5 (cm)	3	

	GCSE Pilot 2006		Final Mark Scheme
	Mathematics Foundation Tier	Mark	Comments
	Paper 2		
16.	Mid points 154, 161, 168	B1	
	$154 \times 18 + 161 \times 37 + 168 \times 25$	M1	FT for their mid points from within groups (not bounds).
	12929	A1	FT for correct sum of their <i>fx</i> terms.
	161.6(125)	A1	FT for their $\Sigma fx / 80$ correctly evaluated.
			Do not allow 161.
			Unsupported 161.6125 awarded all 4 marks.
			SC1 for bounds with correct FT answer (lower
			158.6125 upper 164.6125).
		4	
17.	(a) $\frac{1}{2} \times \pi \times 6.4^2$	M1	
	$64.(33cm^2)$	A1	SC1 for 128.(), 257.()
	(b) Area \times length = 2.5 \times 1.6 \times (100)	M1	Change of units not necessarily shown
	Change of units $e_{g} = 160 \text{ or } \times 100$	M1	
	shown		
	$400 (\text{cm}^3)$	A1	CAO
	, (om)	5	

		GCSE Pilot 2006		Mark Scheme
	I	Mathematics Higher Tier	Mark	Comments
		Paper 1		
1.	<i>(a)</i>	All points plotted correctly	B2	B1 for at least 3 correct plots, or B1 if tests reversed
				Ignore line of best fit, <i>Penalise joined point to point</i> -1
	<i>(b)</i>	Negative	B1	Do not accept descriptions.
			3	
2.	3a +	6b +	B1	Expansion of brackets
	10a		B1	FT for their expansion
	-2b		B1	FT for their expansion
			3	
3.	<i>(a)</i>	x = 2 (cm) and $y = 5$ (cm)	B2	B1 for one correct or methods for finding both shown
	(1)	11 + 0 + 4 + - + - + 7 + 2 + 2	M1	$\sum T (4 - i) = $
	(D)	11+8+4+x+y+7+2+3		F 1 their x and y values from (a), $55 + x + y$ for M & A
		-42 (cm)	AI	marks
	(a)	$8 \times 4 + 5 \times 10 + 2 \times 3$ or $3 \times 11 + 7 \times 0$	M2	FT their $x & y$ for M marks only
	(c)	$8 \times 4 + 5 \times 10 + 2 \times 5 \text{ or } 5 \times 11 + 7 \times 9 = 1 \times 2 \text{ or equivalent}$	1112	M1 for attempt showing total area with 1 area correct
			A1	CAO
		$88 (cm^2)$		
			7	
4.	(a)	$a = 70^{\circ}, b = 70^{\circ}, c = 110^{\circ}, d = 35^{\circ}$	B4	B1 for each, FT from previous answers when logical
		, , , ,		
	<i>(b)</i>	(i) Bearing $329^{\circ} \pm 2^{\circ}$	B1	
		(ii) $036^{\circ} \pm 2^{\circ}$ from D	M1	
		285° <u>+</u> 2° from E	M1	
		G indicated or implied by point	A1	Depends on at least 1 M mark
			8	
5.	$\frac{1}{2} \times$	5×6	M1	Attempt $\frac{1}{2}$ base × height seen, e.g. 2.5×6
	= 15	(cm ²)	A1	
	<i>(</i>)		2	
6.	<i>(a)</i>	Correct reflection in the line $y=-1$	B2	BI for a reflection in any line indicated, or BI for
				drawing $y = -1$
	(\mathbf{h})	Correct translation	D 1	
	(D)	Correct translation	3	
7.	(a)	50	M1	
	(0)	50/200 (× 100)	M1	
		25%	A1	SC1 for 125%. Penalise -1 for further working after
				25%.
	<i>(b)</i>	(i) 100/5	M1	
		Nigel $(\pounds)80$ and Paul $(\pounds)20$	A1	CAO
		(ii) No	B1	Maybe implied in explanation
		1/5, 4/5 OR 9, 36 matches	E1	FT their (b)(i) logic.
		OR Nigel 4, Paul 1, then		"Nigel should go more" is insufficient.
		repeat etc. OR		
		NNNNPNNNNP OR	_	
			7	

	GCSE Pilot 2006	N/1-	Mark Scheme
	Mathematics Higher Tier Paper 1	Mark	Comments
8.	(<i>a</i>) 2, 11	B2	B1 for each
	(b) Plots correct, allowing one error	B1	FT from (a)
	All points correct & joined with a	a B1	FT from (a)
	curve		
0	(a) Mathad that produces at least 2	4 2 M1	
9.	correct prime factors		Ignore 1s seen
	Sight of correct factors (2, 2, 2, 3, 3, 5)	B1	
	$2^3 \times 3^2 \times 5$ or $2^3 \cdot 3^2 \cdot 5$		
	(c) E.g. Odd power index 5 is no	t	
	even,	E1	FT their factors (with at least on index >1 used).
			Do not ignore 1s.
10	(a) Bisector of angle CAB	4 B1	+20
10.	Arc radius 6cm centre B	B1	+1 mm
	Correct region shaded	B1	\overline{FT} for intention of bisector & arc
	(h) Enlargement $1/2$	D1	
	Correct position	B1	
	i i fi	5	
11.	Correct frequency polygon	B2	IGNORE bars if polygon drawn.
			B1 for 4 correct plots, or correct vertical plots, or correct horizontal plots SC1 for correct frequency
			diagram or SC1 for translated polygon.
		2	
12.	0.12 + 0.34	M1	
	= 0.46	2	
13.	<i>(a)</i> 8	B1	
		D1	
	(b) 0.22 or 0.2	BI	Needs to show recurring, do not accept 0.2 or 0.22 etc
		B1	
	(c) (1) $\frac{1}{4}$ or 0.25 (ii) 1	B1	
14	m = 2	4 B1	Gradient
17,	c = 4	B1	Intersection with $v - axis$
	y = 2x + 4	B1	CAO
15	(a) Crown A with valid roogon	3	Valid roogen includes finished first or median lower
13.	(a) Group A with value reason	D2	B1 for Group A with incorrect or no reason.
	(b) (About) 8 (minutes)		
		B1	
16.	(a) $6/4 \times 3.2$	M1	Or equivalent
	= 4.8 (cm)	A1	
	(b) $45/6/4$	M1	Or equivalent
	= 3 (cm)	A1	If no marks in (a) or (b) then award
	× /	4	SC1 for sight of 6/4 or 1.5 or 4/6 or 2/3 or 0.33

	GCSE Pilot 2006 Mathematics Higher Tier Paper 1	Mark	Ma (ark Scheme Comments
17.	$x^2 + 6x - 16$	B2 2	B1 for $x^2 - 16$ or for $6x$.	Only award B2 for the trinomial
18.	Correctly setting up 2 eqns for eliminating 1 variable First variable's value Correctly substituting their first variable Second variable's value	M1 A1 M1 A1 4	Or alternate substitution Either $x = 5$ or $y = -3$ FT their first variable FT their first variable	n method
19.	(a) $5x+5y = 8y+5$ 5x = 3y + 5 x = (3y+5) / 5	B1 B1 B1	Expand Collect Divide	FT each stage for equivalent level of difficulty
	(b) $10k - 5m = ck + 5$ 10k - ck = 5m + 5 k (10 - c) = 5m + 5 k = (5m+9)/(10-c)	B1 B1 B1 B1 7	Expand Collect Factorise Divide	Penalise -1 in (a) & -1 (b) for further incorrect work
20.	$(3x \ 1)(2x \ 3)$ or $(3x \ 3)(2x \ 1)$ $(3x \ + \ 1)(2x \ + \ 3)$ x = -1/3 and $x = -3/2$	M1 A1 B1 3	FT their pair of bracket Use of quadratic form	s. Ignore incorrect simplification <i>ila no marks</i>
21.	(a) $g \alpha h^2 \text{ or } g = kh^2$ $1 = k 3^2$ $g = 1/9 h^2$	M1 M1 A1	FT g α 1/h ² only, for al Maybe implied by use i	ll parts in (b)
	<i>(b)</i> 4/9	B1 4	FT their g=kh ² or g=k/h	h ² only
22.	x=0.3444 and $10x=3.444$ and attempt to subtract 31/90	M1 A1 2	Or equivalent, e.g. Subt N.B. 3.1/9 gets M1, A0	tracting <i>10x</i> & 100 <i>x</i>)
23.	(a) $5/11 \times 4/10$ = $2/11$	M1 A1	Or equivalent (e.g. 20/1	10)
	(b) Complete method, e.g. $P(B'B')$ (=7/11×6/10) = 21/55	M1 A1 4	Or correct full listing w Or equivalent (e.g. 42/1	ith colours 10)
24.	 (a) (i) Correct sketch (ii) Correct sketch (b) Shift down Correct shift down with y=-3 indicated 	B1 B1 M1 A1	May still be above the x	x-axis
25.	$6(x+5) + 3(4x-3) \text{ as a numerator} (4x-3)(x+5) \text{ as a denominator} 6x + 30 + 12x - 9 \frac{18x + 21}{(4x-3)(x+5)}$	4 B1 B1 M1 A1 4	Brackets maybe implied Or $\frac{3(6x+7)}{(4x-3)(x+5)}$ Igno	d by later working ore incorrect expansion of 3)(x+5)
26.	$30 + 6\sqrt{2} + 5\sqrt{2} + 2$ = $32 + 11\sqrt{2}$ and irrational	M1 A1 2	$\sqrt{2\sqrt{2}}$ must be evaluated	aanse jurmer joonsnness -1]

	GCSE Pilot 2006		Mark Scheme
	Mathematics Higher Tier	Mark	Comments
	Paper 2		
1.	A stage of working e.g. 1 ½(jars) to	M1	
	$2(\text{slices}) 3.4 \frac{3}{4}$	A1	
	15 (jars)	2	
2	(a) 15 and 27 entered in the table	 	
₽.	(u) 15 and 27 entered in the table	DI	
	(b) -1 x^3 or $x^3 - 3$	B2	B1 for either -1 -3 or r^{3} in either hov
	(b) 1, x5 of x5, 5	02	Accept equivalent in words
		3	Accept equivalent in words
3	(a) (i) $150 \times 4 + 120$ (r1) or		Seen or implied in either part
5.	(ii) $150 \times 4 + 120 \times 2$	Δ1	Do not penalise decimal money notation
	(ii) $130 \times 3 + 120 \times 2$ 720(n) or (f)7 20	Δ1	SC1 for (f) 1/1 & (f) 11
	(20(p) or (1)).20	AI	$SCI JOT (2)14 \propto (2)11$
	690(p) of (1)6.90		
	(h) 72(n) or $(0(n)$ or $2(n)$	M1	For finding a correct 10% FT from (a)
	(b) $72(p)$ of $69(p)$ of $5(p)$ 720 + 72 or $600 + 60$ or $20 + 2$	M1	Method of finding 110% FT from (a)
	720 + 72 or $690 + 69$ or $30 + 3$	Δ1	Correct for ET for Mega & Bonus logic
	55(p) and Bonus (deal)		Populise place value of money everall 1 (e.g. all
			remarks place value of money over an -1 (e.g. an values which are nonce with f sign)
		6	values which are pence with a sign)
4	(a) $8x + 4x = 7 - 4$	B1	ET until 2^{nd} error in (a) & (b)
	$\frac{12x=3}{2x=3}$	B1	
	$x = 3/12$ (= $\frac{1}{4} = 0.25$)	B1	
	x 3/12 ()4 0.23)	51	
	(b) $10x - 15 = 50$ or $2x - 3 = 50/5$	B1	
	10x = 65 or $2x = 13$	B1	
	x = 65/10 or $x = 13/2$ (= 6.5)	B1	
	(c) (i) $2x(x-3)$	B2	B1 for partially factorised
			$2(x^2 - 3x)$ or $x(2x - 6)$ or $2x(x \dots)$ or $2x(\dots -3)$
	(ii) $3(a-4)$	B1	
	(d) -2, 1, 6	B2	B1 for any 2 terms correct OR SC1 for -3,-2,-1
		11	
5.	Attempt substitution of one value of x	M1	
	between 0 & 4		
	Two correct points on the line given (or	Al	
	plotted)		
	Correct straight line drawn	Al	CAO. SCI for $y=2x+3$ or a straight line with correct
		2	gradient of 3
	20 (lm / h)	<u>5</u>	D1 for each of 20 or $\frac{1}{2}$ 11/ (or 1 h 20 $\frac{1}{2}$ 00 $\frac{1}{2}$)
0.	20 (Km / n)	B2	B I for sight of 30 and $1\frac{1}{2}$ (or 1 hr 30 mins or 90 min)
			(NO1 1.30hr). SC1 for 12 (from 30/2.5)
-	(a) A	2 D2	
/.	(a) 4.8	В2	B1 for 4.809or SC1 for -1.8 or their answer to 1dp.
	(b) $\frac{3}{2}$ or 0.75	R1	
	(0) 74 01 0.73		
	(a) = 6.14	R2	B1 for 61(3652)
	(0) 0.14	102	D1 101 0.1(3032)
	(d) 945 and 955	B2	R1 each Accent 05/ 0000 at not 05/ 0
	(u) 275 anu 255	7	Di cacii. Accept 934.9999 etc, not 934.9.

	GCSE Pilot 2006 Mathematics Higher Tier	Mark	Mark Scheme Comments
	Paper 2	Wark	Comments
8.	5500.00 <u>330.00</u> 5830.00 349.8(0) OB	B1 M1 A1	For a correct 6%. For the overall method (2 stages of adding <u>different</u> 6%).
	$\begin{array}{c} \underline{547.8(0)} \\ 6179.8(0) \\ 6179.8(0) \\ 6179.8(0) \\ \end{array} \qquad \begin{array}{c} \underline{5500(1.06)^2} \\ A2 \\ \end{array}$	3	C.A.O. Ignore subsequent working. SC1 for $(\pounds)6160$ (simple interest), alternatively they may get the B1 for $(\pounds)660$ if seen.
9.	Mid points 154, 161, 168 $154 \times 18 + 161 \times 37 + 168 \times 25$ ($\sum fx =$) 12929 161.6(125)	B1 M1 A1 A1	FT for their mid points from within group (not bounds) FT for correct sum of their fx terms FT their $\sum fx / 80$ correct evaluated. Do not allow 161. Unsupported 161.6125 awarded all 4 marks. SC1 for bounds with correct FT answer (lower 158.6125, upper 164.6125)
10.	(a) $\frac{1}{2} \times \prod \times 6.4^2$ = 64. (33 cm ²)	M1 A1	SC1 for 128. (), 257. ()
	(b) Area \times length = 2.5 \times 1.6 \times (100) Change of units, e.g. 160 or \times 100 shown = 400 (cm ³)	M1 M1 A1 5	Change of units not necessarily shown. CAO
11.	One correct evaluation $1 \le x \le 2$	B 1	$X \qquad 2x^3 + x - 8$
	2 correct evaluations, $1.3 \le \times \le 1.6$, one either side of 0 2 correct evaluations, $1.45 \le \times \le 1.5$, one either side of 0 OR correct evaluation of 1.45 if previous B1 awarded	B1 M1	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
	1.5 No calculations shown: accept "too high", ">", etc.	A1 4	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
12.	(a) $(x-10)(x+1)$ x = 10 and x = -1 (b) $24 - 2x = 30 - 5x$ 3x = 6	B2 B1 B1 B1 B1 B1	B1 for $(x \ 10)(x \ 1)$ with no or incorrect signs B1 their pair of brackets FT (including $24 - 2x = 30 - x$ to $-x = 6$ here) FT (from above to $x = -6$)
	(c) $12 x^8 y^7$	B2	B1 for any two factors number, $x & y$ correct, or correct but with "times" left in expression
	(d) $(x+3)(x-3)$	B1 9	FT until 2 ^{na} error

	GCSE Pilot 2006 Mathematics Higher Tier	Mark	Mark Scheme Comments
	Paper 2		
13.	(a) $0.3, 0.8, 0.2, 0.8$ on correct branches	B2	B1 for one correct entry
	(b) 0.7×0.8	M1	FT their 0.8 entry
	= 0.56	A1	
		4	
14.	(a) (i) 6×10^6	B1	Penalise –1 once only for incorrect notation
	(ii) 4.3×10^{-3}	B1	
	(b) 1.68×10^9	B2 4	Allow 1.7×10^9 for B2 B1 for 16.8×10^8 OR $n \times 10^9$ where $n = 8.4 \times 2/10$ incorrectly evaluated OR 1680 000 000 OR 1.6×10^9
15	(a) $\cos 39^\circ = FE / 14.8$	M1	
10.	EF = 11.5(0)	A2	A1 for $EF = 14.8 \times \cos 39^{\circ}$
	(b) $\tan S = 12.9 / 19.5$	M1	A1 for tap S = 0.60(180)
	(b) $\tan 5 - 12.6 / 16.3$ S = 24.670 rounded or truncated to	A2	A1 101 tall 5 = 0.09(189).
	s = 34.079 founded of truncated to at least 1 d n or 35°		
	ut louse 1 u.p. of 55	6	
16.	$x = \{ -31 \pm \sqrt{(31^2 - 4 \times 3 \times 8)} \} / (2 \times 3)$	M1	Allow one slip in substitution
	$= (-31 \pm \sqrt{865}) / 6$	M1	
	$x = -0.26$ and $\times = -10.07$	Al	FT if M1 awarded and denominator treated as 2a for
		3	numerator
17.	Attempt to calculate at least 1 area with at	M1	Areas are 1.5×10+2×6+4×2.5+4×3+6×1.5+10×0.5
	least 1 correct Calculate shown or implied for all 6 areas.	M1	= 15+12+10+12+9+5
	with at least 4 correct		
	63	A1	
		3	
18.	Mean = 5.22	B1	
	$\sum x^2 = 320.54$ or sight of complete correct	M1	Or sight 4.79()
	method	AI	
	S.D. = 2.19(2) or 2.2	3	
19.	(a) 90°	B1	
	(b) 62°	B1	OR equivalent description or calculations
	(c) angle in semi circle OR (b) alternate	E1	
	segment theorem	21	
	C .	3	
20.	$\frac{1}{2} \times \frac{4}{3} \pi r^{3} = 34.2$ or equivalent	M1	
	$r^3 = 6 \times 34.2$ (= 16.329)	M1	Maybe implied in stages of working
	4π	. 1	
	r = 2.5(37)		SC1 for $2.01(3)$ from using volume of a sphere
21	11.50	Э В1	
41.	11.5 168 46° or 168 5°	B1	FT 180 – first value Penalise further values – only
	100.70 U 100.J	2	1 1 100 mist value. I chanse further values – only

	GCSE Pilot 2006 Mathematics Higher Tier Paper 2	Mark	Mark Scheme Comments
22.	(a) $10\mathbf{x} + 3\mathbf{y} - (4\mathbf{x} + \mathbf{y})$ = $6\mathbf{r} + 2\mathbf{y}$	M1	Award SC1 for $6r + 4y$ from $10r + 3y - 4r + y$
	(b) $\mathbf{AC} = 9\mathbf{x} + 3\mathbf{y}$ $\mathbf{OC} = 13\mathbf{x} + 4\mathbf{y}$	M1 A1 4	FT their $1.5 \times (a)$ in the form $\dots x + \dots y$. Accept unsimplified form Accept unsimplified form. FT their $1.5(a) + 4x + y$
23.	$BD^{2} = 26.2^{2}+29.3^{2}-2\times26.2\times29.3\times\cos 30^{\circ}$ = 215.3(038) BD = 14.67() or 14.7 $\frac{14.4}{\sin 50^{\circ}} = \frac{BD}{\sin A}$ sin A = BD x sin 50° / 14.4 51.29(79)° or 51.3° or 51.4°	M1 M1 A1 M1 M1 A1 6	FT their BD

GCSE MS - Mathematics Pilot Scheme (Summer 2006)/AOB

Welsh Joint Education Committee 245 Western Avenue Cardiff. CF5 2YX Tel. No. 029 2026 5000 Fax. 029 2057 5994 E-mail: <u>exams@wjec.co.uk</u> website: <u>www.wjec.co.uk/exams.html</u>

