$\frac{\text { WJEC }}{\text { CBAC }}$

GCSE MARKING SCHEME

MATHEMATICS 2-TIER
SUMMER 2010

INTRODUCTION

The marking schemes which follow were those used by WJEC for the Summer 2010 examination in GCSE MATHEMATICS - 2-TIER. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.
Page
Mathematics Paper 1 - Foundation Tier 1
Mathematics Paper 1 - Higher Tier 4
Mathematics Paper 2 - Foundation Tier 6
Mathematics Paper 2 - Higher Tier 9

Mathematics Paper 1 - Foundation Tier

Paper 1 (Non calculator) -Foundation Tier Summer 2010	\checkmark	Marks	Comments
1. (a) (i) 12314 (ii) Six hundred and fifty one thousand three hundred		$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	$\begin{aligned} & \hline \text { C.A.O. } \\ & \text { C.A.O. } \end{aligned}$
1. (b) (i) 43 and 47 (ii) 12 and 37 (iii) 55 (iv) 16		$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	In either order In either order C.A.O. C.A.O.
1. (c) 6580		B1	C.A.O.
1. (d) 30 (\%)		B1	C.A.O.
1. (e) $1,35,5,7$		B2	B1 for any 2 OR 3 factors and no incorrect numbers. OR the 4 correct factors and 1 incorrect number.
		$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	$\begin{aligned} & \hline \text { C.A.O. } \\ & \text { C.A.O. } \end{aligned}$
2. (b) $\quad(0) \cdot 7(0)$ (0). 75 $\begin{array}{lll} .7(0) \text { or } 70 \% & .73 & .75 \text { or } 3 / 4 \end{array}$		B1 B1 B1	C.A.O. C.A.O. If no answer offered on the dotted lines, allow the first two B1s if (0)•7 and/or (0). 75 seen in subsequent work. F.T. their values.
3. (Viewed with diagram) Attempt to count squares $62-70$ cm^{2}		$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { U1 } \end{aligned}$	Within the range inclusive Independent of the other marks Answers such as 65^{2} get M1, A1, U0
4. (a) Overlay Point E so that $\mathrm{DE}=9 \cdot 8(\mathrm{~cm})$		B1	Inclusive bounds are shown on overlay. Allow the letter E only to mark the point.
4. (b) Overlay (viewed with diagram) (i) angle 103° (ii) angle 42° $\mathrm{AC}=15 \cdot 3(\mathrm{~cm})$ Must be a line from A cutting the given line through B. Their point of intersection is C . If line is a 'dog leg', use part starting at A to decide the 42° and AC gets B 0 . Generally, use the overlay to check that their line AC is consistent with their value for AC . Otherwise use measuring tool.		$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	Allow $\pm 2^{\circ}$ Inclusive bounds are shown on overlay. F.T. their diagram. If their angle is $40^{\circ} \mathrm{AC}=14.4(\mathrm{~cm}) \pm 2 \mathrm{~mm}$ If their angle is $44^{\circ} \mathrm{AC}=16.0(\mathrm{~cm}) \pm 2 \mathrm{~mm}$ (Interpolate other angles between $40-44$) For angles outside this range, use a measuring tool. Note: A straight line drawn from A to end of the line through B , gives $\mathrm{AC}=16 \cdot 5 \pm 2 \mathrm{~mm}$. and gains the $3^{\text {rd }} \mathrm{B} 1$. (The 42° would be B0).
5. (a) (i) certain (ii) (an) even chance (iii) impossible (iv) unlikely		$\begin{aligned} & \hline \text { B1 } \\ & \hline \end{aligned}$	C.A.O. Accept 'evens' C.A.O. C.A.O
(b) (i) $1 / 4$ OR $90 / 360$ (ISW) OR equivalent. (ii) $120 / 360$ of $240 \quad \underline{\text { OR } \quad \mathbf{1 2 0} \times \mathbf{2} / \mathbf{3}}$ $=80$	\checkmark \checkmark \checkmark \checkmark \checkmark	B2 M1 A1	B1 for sight of $90 \pm 2^{\circ}$. OR B1 for F.T. their fraction : their angle $(85-95)$ Allow $115^{\circ}-125^{\circ}$ F.T. their ' $115-125$ ' $(76-84) \quad 80 / 240$ gets M1, A0. If they work out C and D separately then $M 1$ for either C or D worked out by a correct method and A1 for BOTH answers correct. (Values for C and D between 38 and 42 inclusive).

Paper 1 (Non calculator) Foundation Tier Summer 2010	\checkmark	Marks	Comments
$\begin{aligned} & \hline \text { 6. } \mathrm{A}(5,1) \\ & \mathrm{B}(-3,0) \\ & \mathrm{C}(-2,-3) \end{aligned}$		$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	C.A.O. Reverse coordinates gets 0. C.A.O. Allow plots within a 2mm square inclusive. C.A.O. Ignore incorrect labelling. Accept the letters A,B, C instead of points
Parts (a) \& (b) marked at the same time 7. (a) Correct pattern with 8 black and 12 white discs 7. (b) $\begin{array}{rr}8 & 10 \\ & 12\end{array} 14$		B1 B2	C.A.O. B1 for each column. F.T. from 1st column (+2)
7. (c) (i) $16 / 2$ $=8$ (ii) $\begin{gathered}16+4 \\ =20\end{gathered}$		$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \end{gathered}$	C.A.O. F.T. $2 \times$ 'their 8 ' +4
$\begin{array}{ll} \text { 8. } & a=5 \\ & b=2 \\ & c=4 \\ d=7 \end{array}$	$\begin{aligned} & \checkmark \\ & \checkmark \\ & \checkmark \\ & \checkmark \end{aligned}$	$\begin{gathered} \hline \text { B1 } \\ 4 \end{gathered}$	C.A.O. F.T. $17-3 \times$ 'their a' F.T. [12-2×'their b']/2 F.T. 18 - 'their $\mathrm{a}+\mathrm{b}+\mathrm{c}$ '
9. (a)47 OR 36 $\times 36$ 282 $\frac{147}{252}$ 1410 1692 $\underline{1440}$ $=1692$ seats $=1692$ seats	\checkmark \checkmark \checkmark	M1 A1 A1	Any correct method for the multiplication of 47 by 36 For either 282 or 1410 OR for 252 or 1440 (Apply 'one error' in other methods) C.A.O. Place value errors get M0, A0
$\text { 9. (b) } \begin{aligned} (1 / 9 \text { of } 72)=8 \\ 4 / 9 \text { of } 72=32 \end{aligned}$		$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	Allow B1 for $4 / 9 \times 72$ OR 288/9 OR sight of 8 C.A.O.
9. (c) 10		B1	Accept -10
10.(a) (i) $19 \cdot 24$ (ii) 19240 (iii) $5 \cdot 2$		$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	$\begin{aligned} & \text { C.A.O. } \\ & \text { C.A.O. } \\ & \text { C.A.O. } \end{aligned}$
10. (b) (i) 1000 (ii) 9.02		$\begin{aligned} & \hline \text { B2 } \\ & \text { B1 } \end{aligned}$	$\begin{aligned} & \text { B1 for the } 8 \text { OR } 125 \text { OR } 10^{3} \text {. B0 for } 2 \times 2 \times 2 \times 5 \times 5 \times 5 \\ & \text { C.A.O. } \end{aligned}$
$\begin{aligned} & \hline \text { 10. (c) (i) } 6400 \\ & \text { (ii) } 0.053 \end{aligned}$		$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	C.A.O. C.A.O. 0.05300 etc gets B0
$\begin{array}{cl} \text { 11. (a) } 360-66-58 \\ 118 & =236 \end{array}$	$\begin{aligned} & \checkmark \\ & \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$	Any correct method, e.g. using isosceles triangles. F.T. 'their 236 ' $\div 2$
$\text { 11. (b) } \begin{aligned} & \mathrm{S} \\ & \mathrm{R} \\ & \mathrm{Q} \end{aligned}$		$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	

Paper 1 (Non calculator) Foundation Tier Summer 2010	\checkmark	Marks	Comments	
All parts (a) - (d) marked at the same time 12. (a) (b) (i) $5 / 36$ ISW (ii) $31 / 36$ ISW (c) $4 / 36$ ISW (d) (i) $4 / 36 \times 360$ $=40$ (ii) Profit $=360 \times £ 1-40 \times £ 5$ $=£ 160$		B2 B2 B1 B1 M1 A1 M1 A1	B1 for any 1 correct column OR B1 for 6,6 with 5,5 with any one of the four rows of 4,5 F.T. their table B1 for a numerator of 5 in a fraction less than 1. B1 for the 36 in a fraction <1. Do not penalise incorrect reduction of fractions in (b)(i). F.T. 1 - 'their 5/36' $(\neq 1 / 2)$. B 0 here if there is incorrect reduction. F.T. consistent use of 'their 36' F.T. 'their $(c) \times 360$ ' $(\neq 1 / 2)$. A0 here if there is incorrect reduction. M1, A0 for 40/360. F.T. 'their 40 '	NOTES Penalise -1 for use of words such as " 5 out of 36 ", " 5 in 36 " OR "5:36". When fraction and wrong notation seen, DO NOT penalise wrong notation.
$\begin{aligned} & \text { 13. (a) } 2 \text { and } 8 \text { in any order } \\ & 5 \text { in the square and } 12.5 \text { in the cross } \\ & \text { H1 } \end{aligned}$		$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$		
13. (b) $x+y$ in the circle and $x y$ in the cross H1		B2	B1 for either. Accept $x \times y$ for $x y$	
14. (Viewed with diagram) (a) $120\left({ }^{\circ}\right)$ H3a		B1	Must be 3 figure bearing	
14. (b) $180+52$ OR $360-(180-52)$ OR equivalent H3b $232\left({ }^{\circ}\right)$		$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \hline \end{aligned}$		
15. (a) $2 \times \pi \times 5$ or equivalent H4a 31.(4... cm)		$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	Accept their value of π for M1 Watch for $5^{2}=10$ which gets M0, A0.	
$\begin{aligned} & \text { 15. (b) } \pi \times 10^{2} \\ & \text { H4b } \end{aligned}$		$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Accept their value of π for M1. Needs in $\pi \times 5^{2}$ is NOT a misread. It gets M0, $\pi \times \mathrm{r}^{2} \times 10 \times 10$ gets M 0 , A0	$\text { ntion of } 10^{2}$
$\text { 15. (c) } 0.5 \times 2.8 \times(3+7)$		$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	OR equivalent	
$\text { 16. (a) } 12.5,17 \text { and } 21.5$ H5a	\checkmark	B3	B2 for any 2 correct. B1 for any one correct or sight of 4.5	
16. (b) $5 \mathrm{n}+3$ OR $5 \times \mathrm{n}+3$ H5d		B2	B1 for 5n. Accept 5 N , but penalise -1 for using an	ther letter.
16. (c) $\mathrm{n} \times \mathrm{n}$ OR n^{2}		B1	Accept nn OR (any letter) ${ }^{2}$ without penalty B0 for pattern \times pattern etc	
17. (a) Method with at least 2 correct prime factors Sight of correct factors ($2,2,2,3,3,11$) $2^{3} \times 3^{2} \times 11 \text { or } 2^{3} \cdot 3^{2} \cdot 11$ H6a	$\begin{aligned} & \hline \checkmark \\ & \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$	Starting with 792, two correct primes be Ignore 1s seen FT their factors (with at least one index Do not ignore 1s.	re $2^{\text {nd }}$ error. used).
17. (b) e.g. 2×3^{2} not even powers, or 2×9 but not square H6b		E1	OR $4 \times 4=16$ and $5 \times 5=25$ so 18 not squa Do not accept "even powers" without r "no number times itself gives 18". But WHOLE number times itself gives 18 ".	vant working, nor accept " no
18. Overlay Correct region shaded Tick outside the region covered by the overlay. H7	$\begin{aligned} & \checkmark \\ & \checkmark \\ & \checkmark \end{aligned}$	B3	Mark intention. B1 for line (at least 1 cm), B1 for arc (at leas (F.T. arc centre A and a line crossing AB) (Shading needs to be on both sides of AB) Note: Arc centre B is MR-1 and continue to	$\mathrm{cm})$, B1 for shading

Mathematics Paper 1 - Higher Tier

Paper 1 (Non- calculator) - Higher Tier Summer 2010	Marks	Comments
1. (a) 2 and 8 in any order 5 in the square and 12.5 in the cross (b) $x+y$ in the circle and $x y$ in the cross	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B2 } \\ & 4 \end{aligned}$	B1 for either. Accept $x x y$ for $x y$.
2.(a) Correct reflection (in the line $x=-2$) (b) Correct translation	$\begin{aligned} & \text { B2 } \\ & \text { B2 } \\ & 4 \end{aligned}$	B1 for a reflection in any vertical line, or B1 for drawing $x=-2$, or $B 1$ for reflection in $y=-2$ without line shown. B1 for translation 2 right or 3 up.
$\begin{aligned} & \text { 3. (a) } \begin{aligned} & 3 \mathrm{x}+20+\mathrm{x}+60+\mathrm{x}=180 \text { OR equivalent } \\ & \mathrm{x}=20^{(0)} \\ & \mathrm{y}=160^{(0)} \\ & \text { (z=) } 3 \mathrm{x}+20 \text { or } 3 \times 20+20 \\ & \mathrm{z}=80^{(0)} \end{aligned} \end{aligned}$ (b) (i) $120^{(0)}$ (ii) $180+52$ OR $360-(180-52)$ OR equivalent $232^{(0)}$	M1 A1 B1 M1 A1 B1 M1 A1 8	Award M1 A1 for 20° without working FT $180-\mathrm{x}$. SC1 $4 x+80$ or $3 x+20+x+60$ FT from their x For evaluation
4. (a) $2 \times \Pi \times 5$ or equivalent $31 .(4 \ldots \mathrm{~cm})$ (b) $\Pi \times 10^{2}$ 314.(.. $\left.\mathrm{cm}^{2}\right)$ (c) $0.5 \times 2.8 \times(3+7)$ $14\left(\mathrm{~cm}^{2}\right)$	M1 A1 M1 A1 M1 A1 6	Accept their value of Π for M1 Accept their value of Π for M1. Needs intention of 10^{2} Or equivalent
5.(a) $12.5,17$ and 21.5 (b) $-2,1,6$ (c) (i) -2 (ii) $7(\mathrm{n}-5)$ or $7 \mathrm{x}(\mathrm{n}-5)$ or $7 \mathrm{n}-35$ ISW (d) $5 \mathrm{n}+3$ or $5 \mathrm{xn}+3$ (e) $\mathrm{nxn}+1$ or $\mathrm{n}^{2}+1$	$\begin{aligned} & \text { B3 } \\ & \text { B2 } \\ & \text { B1 } \\ & \text { B2 } \\ & \text { B2 } \\ & \text { B2 } \\ & 12 \end{aligned}$	B2 for any 2 correct. B1 for any one correct or sight of 4.5 B1 for any 2 terms correct. SC1 for $-3,-2,1$ OR $1^{2}-3$, etc B1 for missing or incorrect brackets, e.g. $n-5 \times 7,7 n-5$, n-5(7) B1 for $5 n$ B1 for sight of n^{2} or $\mathrm{n} \times \mathrm{n}$, must be coefficient 1
6. (a) Method with at least 2 correct prime factors Sight of correct factors (2, 2, 2, 3, 3, 11) $2^{3} \times 3^{2} \times 11$ or $2^{3} .3^{2}$. 11 (c) E.g. 2×3^{2} not even powers, or 2×9 but not square	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \\ & \\ & \text { E1 } \\ & 4 \end{aligned}$	Starting with 792, 2 correct primes before $2^{\text {nd }}$ error Ignore 1s seen FT their factors (with at least one index >1 used). Do not ignore 1s. Or $4 \times 4=16$ and $5 \times 5=25$ so 18 not square Do not accept "even powers" without relevant working, nor "no number times itself gives 18". But do accept "no whole number times itself gives 18 "
7. Correct region shaded	$\begin{aligned} & \hline \text { B3 } \\ & 3 \end{aligned}$	Mark intention. B1 for line, B1 for arc, B1 for shading (FT arc centre A and a line crossing AB). Shading needs to be on both sides of $A B$. Remember arc centre B is MR-1 continue to mark
8. (a) $\begin{array}{cc} 20+x=3 \times 7 & \text { OR } 20 / 3+x / 3=7 \\ x=3 \times 7-20 & \text { OR } x / 3=7-20 / 3 \\ x=1 \end{array}$ (b) $6 \mathrm{x}-2 \mathrm{x}<24 \underset{\mathrm{x}<6}{\text { OR } 4 \mathrm{x}}<24$	$\begin{aligned} & \hline \text { B1 } \\ & 5 \end{aligned}$	OR first correct step FT until $2^{\text {nd }}$ error (a)\&(b) Working with $20+\mathrm{x}$ incorrectly is 2 errors Or unsimplified equivalent Must be simplified Use of " $=$ "gets 0, unless replaced to finish, then B2
9.(a) -1 (b) Plots correct, allowing one error All points correct \& joined with a curve (c) $y=-20$ seen or implied About -1.8	B1 B1 B1 M1 A1 5	FT from (a) FT from (a) FT their graph FT their graph

Paper 1 (Non- calculator) - Higher Tier Summer 2010	Marks	Comments
10.(a) 22 (b) Computer Tronics Reason, e.g. Mode lower, less time, (c) $2,18,24,28$ (d) Intention to plot at upper bounds 3 unique vertical plots correct All plots correct and joined (e) (i) Median from cumulative graph (....) (ii) Attempt, (using the reading on the horizontal) UQ - LQ	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \text { E1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & 10 \\ & \hline \end{aligned}$	CAO. Now only FT their cumulative table to (d) Ignore bars only if intention clear that line or curve is being used in (e) FT from their cumulative graph in (e) If (c) is not cumulative then do not FT to (d) and (e)
11. Idea that $5 \mathrm{~s}+3 \mathrm{~b}=100$ or $\mathrm{s}+\mathrm{b}=22$, which maybe via calculations shown or equations Equal coeffs. for simultaneous equations, or trial pairs of values total 22 aiming to make 100 Sara 17 and brother 5	$\begin{aligned} & \text { S1 } \\ & \text { M1 } \\ & \text { A2 } \\ & 4 \\ & \hline \end{aligned}$	Working that meets just one of the two criteria, e.g. any 2 ages with total of 22 A1 for either correct Answers only credit all 4 marks
12. Implied or sight of $2^{2}, 4,3^{2}$ or 9 Considers 2.5^{2} Evaluates 2.5^{2} to 6.25 Answer 3 given having considered 2.5^{2}	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & 4 \\ & \hline \end{aligned}$	Or 2.5^{2} 2.5^{2} may not have been evaluated correctly SC1 for answer of 3 with spurious or no working
13.(a) All 6 correct entries (b) 0.4×0.3 $=0.12$	$\begin{aligned} & \hline \text { B3 } \\ & \text { M1 } \\ & \text { A1 } \\ & 5 \\ & \hline \end{aligned}$	B2 for any 2 correct pairs OR B1 for any 2 correct entries FT their unambiguous entries Or equivalent
14.(a) Alan AND reason given (b) Clive AND reason given (c) 58.9 AND 2.6	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & 3 \end{aligned}$	e.g. "smaller value for SD" E.g. "greater mean" ignore mention of SD. Accept Alan with full explanation mentioning SD \& mean
15. (a) 23^{0} Alternate segment theorem (b) 67^{0} (Isosceles triangle,) angle at centre twice angle at circumference or alternative	$\begin{aligned} & \text { B1 } \\ & \text { E1 } \\ & \text { B1 } \\ & \text { E1 } \\ & 4 \\ & \hline \end{aligned}$	Accept equal to $A \widehat{C} B=A \widehat{B} R$ FT if possible Do not accept calculation shown. Accept abbreviations
$\begin{aligned} & \text { 16.Area scale factor } 3^{2} \text { or } 9 \\ & 90 / 9 \\ & 10\left(\mathrm{~cm}^{2}\right) \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & 3 \\ & \hline \end{aligned}$	FT for M1 only incorrect evaluation of 3^{2} as 6 CAO
17. (a) $(2 \mathrm{w}+3)(7 \mathrm{w}+1)$ $-3 / 2$ and $-1 / 7$ (b) $(3 \mathrm{e}-7)(3 \mathrm{e}+7)$	$\begin{aligned} & \text { B2 } \\ & \text { B1 } \\ & \text { B2 } \\ & 5 \\ & \hline \end{aligned}$	B1 for $(7 \mathrm{w} \ldots 1)(2 \mathrm{w} \ldots 3)$ or split mid term and $1^{\text {st }}$ step factor F.T. for pair of brackets B1 for (3e ... 7)(3e ... 7)
18.(a) Reflection (b) Translation to the right Clearly crosses $(5,0)$ (c) Vertical translation downwards -6	B1 B1 B1 B1 B1 5	Allow SC1 for left shift with 1 indicated. FT from their vertical translation to -4 only. Accept indication on the diagram
$\begin{aligned} & \text { 19. }(\mathrm{x}+3)(\mathrm{x}-3)+3(\mathrm{x}+1)=2(\mathrm{x}+1)(\mathrm{x}-3) \\ & \mathrm{x}^{2}-9+3 \mathrm{x}+3=2\left(\mathrm{x}^{2}+\mathrm{x}-3 \mathrm{x}-3\right) \\ & \mathrm{x}^{2}-7 \mathrm{x}=0 \\ & \mathrm{x}=0 \text { AND } \mathrm{x}=7 \end{aligned}$	$\begin{aligned} & \mathrm{M} 2 \\ & \mathrm{~A} 2 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & 6 \end{aligned}$	M2 for correct numerator/denominator $=2$, OR M1 for 2 terms correct, or 1 slip, A1 LHS or numerator, A1 RHS expansion FT for equivalent level of difficulty CAO

Paper 2 Foundation Tier (Calculator allowed) Summer 2010	\checkmark	Marks	Comments
Parts (a) \& (b) marked at the same time 1. (a) (56.94) 13.96 (files) 22.08 (post-it) 19.02 (paper) $112(.00)$ (b) (£) $11.2(0)$		B1 B1 B1 B1 B1 5	C.A.O. C.A.O. C.A.O. F.T. their figures for 1 error Unsupported 112(.00) gets B4. F.T. their total (£) $100.8(0)$ gets the B 1.
2. kg cm or mm kilometres or km ml or cm^{3} or l(itres)	$\begin{aligned} & \hline \checkmark \\ & \checkmark \\ & \checkmark \\ & \checkmark \end{aligned}$	$\begin{gathered} \text { B1 } \\ \\ \hline \end{gathered}$	kilos gets B0 C.A.O. kilos gets B0 C.A.O. Ignore quantities, e.g. 56 kg OR 20 cm etc, each get B1
3. (a) radius tangent chord	$\begin{aligned} & \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	$\begin{aligned} & \text { C.A.O. } \\ & \text { C.A.O. } \\ & \text { C.A.O. } \end{aligned}$
3. (b) cuboid rhombus trapezium	$\begin{aligned} & \hline \checkmark \\ & \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	$\begin{aligned} & \text { C.A.O. } \\ & \text { C.A.O. } \\ & \text { C.A.O. } \end{aligned}$
3. (c) Both lines of symmetry	\checkmark	B2	B1 for either one of them and no incorrect lines. OR for both correct lines and 1 incorrect line.
All parts (a) - (c) marked at the same time 4. (a) $5,14,12,6,3$ (b) 1 (c) $0,1,2,3$, M along one axis OR $0,1,2,3,4$ Uniform scale for the frequency axis starting at 0 Five bars at correct heights (ignore widths of bars)		B2 B1 B1 B1 B2 7	B1 for any three/four correct frequencies If frequencies score 0 , then give B1 for all 5 correct tallies. F.T. their table of frequencies Accept 1 and 14 but not 14 alone. Anywhere within the base (inc.) of the corresponding bar. If no scale then B 0 , but allow one square to represent 1 . If frequency scale starts with 1 at the top of the first square the starting at 0 will be implied for B1. F.T. their table of frequencies B1 for any 3 or 4 correct bars on F.T.
5. (a) $\begin{aligned} \text { Printing Cost }=300 \times 9+ & 2000 \\ & =(£) 4700 \end{aligned}$		$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	C.A.O.
$\text { 5. (b) Cost per book } \begin{array}{r} (5000-2000) / 600 \\ =(£) 5 \end{array}$		$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \end{gathered}$	C.A.O. Accept embedded answers.
6. (a)Sum of the numbers (511) Sum / 7 73	$\begin{aligned} & \hline \checkmark \\ & \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { m1 } \\ & \text { A1 } \end{aligned}$	For attempt to add the numbers (totals of 421-601) If seen. C.A.O.
6. (b) $\begin{array}{llllll}51 & 53 & 75 & \underline{\underline{78}} 81 \quad 83 & 90 \\ & & \text { Median }=78\end{array}$		$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \end{gathered}$	For attempting to order the numbers C.A.O.
6. (c) 39		B1	

Paper 2 - Foundation Tier (Calculator allowed) Summer 2010	\checkmark	Marks	Comments
7. Man 5 to 7 ft OR 1.5 to 2.5 metres (Man 1 cm Dinosaur $=8 \mathrm{~cm}$) Multiplying factor $=8$ Estimate height of dinosaur $=$ estimate \times factor F.T. their estimates \times their SF (5-11 inc.) $=$ correct answer for their figures SC1 for answers which: (a) only give man's height as 1 cm and dinosaur's as $8 \mathrm{~cm} \pm 2 \mathrm{~mm}$ OR (b) a proper attempt at 'dividing' the dinosaur's height into equal parts	\checkmark \checkmark \checkmark \checkmark	B1 B1 M1 A1 4	 F.T. their man's height estimate AND scale factors 5-11 inc. Correct units must be seen at least once to get the final A1
8. (a) $7 / 100$		B1	C.A.O.
$\begin{aligned} & \text { 8. (b) } 20 / 84 \text { OR } 2000 / 84 \begin{array}{l} \text { OR } 23.8(095 . .) \text { OR } 20 / 84 \\ \\ \text { Change }=68 \mathrm{p} \end{array} \end{aligned}$	$\begin{aligned} & \hline \checkmark \\ & \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	Sight of (£) 19.32 gets this M1 C.A.O. Allow A1 for an embedded 23 in their working. F.T. their 23
9. (a) (i) 5		$\begin{aligned} & \hline \text { B1 } \\ & \text { B2 } \end{aligned}$	C.A.O. Watch out for $20 \div 5=4$ which gets B0. B1 for sight of 28 OR 'their 28 ' -6
9. (b) Add 7 (to the previous term) Multiply (previous term) by 3		$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	$\begin{aligned} & \text { Accept }+7 \\ & \text { Accept } \times 3 \end{aligned}$
10. (a) $12\left({ }^{\circ} \mathrm{C}\right)$		B1	C.A.O.
10. (b) $-4\left({ }^{\circ} \mathrm{C}\right)$		B1	C.A.O.
10. (c) (+) $7\left({ }^{\circ} \mathrm{C}\right.$)		B1	B0 for -7
11. (a) euros $=1200 \times 1.27$ $=(€) 1524$		$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	C.A.O. Ignore units
11. (b) Pounds $=486 / 1.35$ $=(£) 360$		$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	C.A.O. Ignore units. Allow embedded answers
$\text { 12. (a) } \begin{gathered} 1 \\ -8 \end{gathered}$		$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	C.A.O. F.T. 'their 1' -9 if answer is negative.
12. (b) $x=10 / 4$ I.S.W. (OR $21 / 2$ OR 2.5)		B2	Accept embedded answers such as $4 \times 21 / 2-7=3$ F.T. $a x=b$ provided $a \neq 1$ B1 for $4 x=10$
12. (c) $4 x+2 y$		B2	B1 for either $4 x$ OR $2 y$ in an expression of the form $a x \pm$ by
13.$23 \times 2+24 \times 13+$ $25 \times 14+26 \times 10+27(\times 1)$ OR $46+312+350+260+27$ $=995$ 		$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Not all required, allow 1 error in working shown. C.A.O.
$\text { 14. (a) } \frac{46}{100} \times 54 \quad \begin{array}{r} \\ =24 \cdot 8(4) \text { OR } 25 \text { ISW } \end{array}$		$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	C.A.O. Ignore \%.
$\text { 14. (b) } \frac{77}{140} \times 100 . ~\left(\begin{array}{rl} & \\ = & 55(\%) \end{array}\right.$		M1 A1	C.A.O.

Paper 2 Foundation Tier (Calculator allowed)	\checkmark	Marks	Comments		
15. (a) Reason, e.g. outside the fish \& chip shop H1a		E1	Accept reference to question 2 Ignore additional information given by the candidate once a correct response has been given credit.		
15. (b) Any 2 of: No under $15 \mathrm{~s}, 30$ appears in two boxes, may object to giving their age H1b		E2	E1 for each response. Do not accept: Over 40s in one group, gaps between ages different Ignore additional information given by the candidate once a correct response has been given credit.		
15. (c) (i) Explanation, e.g. vague, no options, asks 2 questions, same question twice, open questions, can't display answers easily, can't answer if answer to Q2 is NO, many payment methods, not same pattern as Q1 \& Q2 (ii) States to give options OR give some options, e.g. card/cash OR deletes 1 question		E1 B1	Do not accept: could be more than one answer Ignore additional information given by the candidate once a correct response has been given credit.		
16. (a) Volume $=6 \times 4 \times 5$ $=120 \quad \mathrm{~cm}^{3}$		$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { U1 } \end{aligned}$	Independent of the other marks		
$\text { 16. (b) } \begin{aligned} & (6 \times 4+4 \times 5+6 \times 5) \\ & \text { Area }=2 \times 74 \text { OR } 2 \times(6 \times 4+4 \times 5+6 \times 5) \\ & =148 \quad\left(\mathrm{~cm}^{2}\right) \end{aligned}$	 \checkmark \checkmark \checkmark	$\begin{aligned} & \text { M1 } \\ & \text { m1 } \\ & \text { A1 } \end{aligned}$	Dependent on the M1 C.A.O.		
17. (a) Strategy, $\times 2.5$ OR $/ 4$ then $\times 10$ or equivalent	\checkmark	M1	Ingredients to serve 10 people		
Any 4 correct values seen	\checkmark	A1	For the spaghetti	For the sauce	
All values correct Accept 1000 g and 2000 g written as 1 kg and 2 kg units need to be correct H2a	\checkmark	A1	$\mathbf{1 0 0 0 g} / 35 \mathrm{z}$ Flour 10 eggs	$\begin{array}{r} 10 \\ 5 \\ 2000 \mathrm{~g} / 70 \mathrm{z} \\ 50 \end{array}$	tbsp olive oil onions fresh chopped toms. leaves of fresh basil
$\text { 17. (b) } 3.5(\mathrm{oz})$ H2b		B1	C.AO.		
	\checkmark \checkmark \checkmark \checkmark	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	F.T. until $2^{\text {nd }}$ error F.T. $a x=b$ provided $a \neq 1$		
$\begin{aligned} & \text { 18. (b) } a^{7} \\ & \text { H3c } \end{aligned}$		B1	C.A.O.		
18. (c) $b^{2}+3 b$ H3d		B2	B1 for either term correct. Accept $b \times b$ or $b b$ as b^{2}, and $b 3$ or $3 \times b$ or $b \times 3$ for $3 b$. If B2 penalise further incorrect working -1		
$\text { 18. (d) } \begin{aligned} & 4 f=e+3 \\ & f=(e+3) / 4 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	Isolating the tem in f. Allow B1 for $f=e / 4+3$		
19. (a) Any correct 5% of a value used in workings $\begin{aligned} & 800-5 \% \text { of } 800(=800-40) \\ & 760-5 \% \text { of } 760(=760-38) \end{aligned}$ (£)722 H6a	\checkmark \checkmark \checkmark \checkmark \checkmark	$\begin{aligned} & \mathrm{B} 1 \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	OR B1 and M2 for 800×0.95^{2} (B1 and M1 for 800x0.95) FT their 760 , but not 800 CAO. Penalise extra working -1 Appreciate: Possible B1 and SC1 for (£)882 Simple depreciate: Possible B1 and M1, answer 720 gets B1 M1		
19. (b) 1 inch as $2.5(4 \ldots \mathrm{~cm})$ or $25(.4 \ldots \mathrm{~mm})$ Realising the need to divide by (4×7) Value between 20 and 30 inclusive $\div(4 \times 7)$ correctly evaluated, rounded or truncated H6b	\checkmark \checkmark \checkmark \checkmark	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	If units are given they must be correct SC1 if for value between 20 to 30 inclusive divided by 30 or 31 correctly evaluated, it is also possible to award $1^{\text {st }}$ B1 for 25. A correct answer only of 0.9(mm per day) gets all 3 marks, other values do not		
$\begin{array}{lr} \text { 20. } 3.6^{2}+7.3^{2}=\mathrm{AC}^{2} \\ & \mathrm{AC}^{2}=66.25 \\ & 8 \text { OR 8.1 OR } 8.14(\mathrm{~cm}) \end{array}$	\checkmark \checkmark \checkmark \checkmark \checkmark	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { A2 } \end{aligned}$	Correct statement (or cosine rule), accept as implied through working FT their AC^{2} rounded to whole, 1 dp or 2 dp if M1 awarded. A 1 for $\mathrm{AC}=8.13(9 \ldots)$		

Mathematics Paper 2 -Higher Tier

\begin{tabular}{|c|c|c|}
\hline Paper 2 (Calculator allowed) - Higher Tier Summer 2010 \& \& Comments \\
\hline \begin{tabular}{l}
1.(a) Reason, e.g. outside the fish \& chip shop \\
(b) Any 2 of: No under \(15 \mathrm{~s}, 30\) appears in two boxes, may object to giving their age \\
(c) (i) Explanation, e.g. vague, no options, asks 2 questions, same question twice, open questions, can't display answers easily, can't answer if answer to Q2 is NO, many payment methods, not same pattern as Q1 \& Q2 \\
(ii) States to give options OR give some options, e.g. card/cash OR deletes 1 question
\end{tabular} \& \begin{tabular}{l}
E1 \\
E2 \\
E1
B1 \\
5
\end{tabular} \& \begin{tabular}{l}
Accept reference to question 2 \\
E1 for each response. Do not accept: Over 40s in one group, gaps between ages different \\
Mark responses in the sections they appear, do not pick out responses in other sections. \\
In all parts ignore additional information given by the candidate once a correct response has been given credit.
\end{tabular} \\
\hline \begin{tabular}{l}
2.(a) Strategy, \(\times 2.5\) OR \(/ 4\) then \(\times 10\) or equivalent \\
Any 4 correct values seen \\
All values correct \\
Accept 1000 g and 2000 g written as 1 kg and 2 kg - units need to be correct \\
(b) \(3.5(\mathrm{oz})\) \\
CAO
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
A1 \\
B1 \\
4
\end{tabular} \& \begin{tabular}{l}
Ingredients to serve 10 people \\
For the spaghetti \\
\(1000 \mathrm{~g} / 35 \mathrm{oz}\) plain flour \\
10 eggs \\
For the sauce \\
10 tbsp olive oil \\
5 onions \\
\(2000 \mathrm{~g} / 70 \mathrm{oz}\) fresh chopped tomatoes \\
50 leaves of fresh basil
\end{tabular} \\
\hline \begin{tabular}{l}
3.(a)
\[
\begin{array}{cc}
7 x-5 x=3-2 \\
2 x=1 \\
x=1 / 2 \quad \text { ISW }
\end{array}
\] \\
(b) \(8(x+2)\) \\
(c) \(a^{7}\) \\
(d) \(b^{2}+3 b\)
\end{tabular} \& \[
\begin{aligned}
\& \text { B1 } \\
\& \text { B1 } \\
\& \text { B1 } \\
\& \text { B2 } \\
\& \text { B1 } \\
\& \text { B2 } \\
\& 8
\end{aligned}
\] \& \begin{tabular}{l}
FT until \(2^{\text {nd }}\) error \\
\(\mathrm{FT} \mathrm{ax}=\mathrm{b}\) provided \(\mathrm{a} \neq 1\) \\
B1 for \(4(2 x+4)\) or \(2(4 x+8)\) \\
B1 for either term correct. Accept \(b \times b\) or \(b b\) as \(b^{2}\), and \(b 3\) or \(3 \times b\) for 3 b . If B 2 penalise further incorrect working -1
\end{tabular} \\
\hline \begin{tabular}{l}
4.(a) Uniform scale shown on \(y\) axis \\
Any 2 correct points plotted Correct straight line drawn \\
(b) \((3+8) / 2\) or \((-1+5) / 2\) or diagram showing strategy to find mid-point (5.5, 2)
\end{tabular} \& \[
\begin{aligned}
\& \text { B1 } \\
\& \text { B2 } \\
\& \text { B1 } \\
\& \text { M1 } \\
\& \text { A2 } \\
\& 7
\end{aligned}
\] \& \begin{tabular}{l}
Must be shown, but then FT an correct implied scale Does not have to start at 0 , in which case start value must be seen B1 for any 1 correct plot Previous B2 maybe implied by sight of a correct line \\
The diagram may show horizontal/vertical lines to the axes from points in a sketch. \\
A1 for either. Accept other notation, e.g. missing brackets, \(\mathrm{x}=5.5, \mathrm{y}=2\). \\
If either coordinate correct do not assume method - check! \\
(5.5, ...) implies M1 A1 BUT (... , 2) does not imply M1 A1. Check
\end{tabular} \\
\hline \begin{tabular}{l}
5.(a) All points correctly plotted \\
(b) Line of best fit through Index 73, Arm 66 \\
(c) Positive \\
(d) (If no line) answer between 58 and \(65(\mathrm{~cm})\)
\end{tabular} \& B3

B2

B1
B1

7 \& | B2 for 5 or 6 points correctly plotted, OR |
| :--- |
| B1 for 3 or 4 points correctly plotted |
| SC1 all correctly plotted but joined. Reverse of axes is MR-1 |
| B1 through means but not reasonable, OR |
| B1 reasonable line not through means |
| Do not accept description |
| FT their line if drawn |

\hline | 6. (a) Any correct 5% of a value used in workings $\begin{aligned} & 800-5 \% \text { of } 800(=800-40) \\ & 760-5 \% \text { of } 760(=760-38) \end{aligned}$ |
| :--- |
| (£)722 |
| (b) 1 inch as $2.5(4 \ldots \mathrm{~cm})$ or $25(.4 \ldots \mathrm{~mm})$ Realising the need to divide by (4×7) Value between 20 and 30 inclusive $\div(4 \times 7)$ correctly evaluated, rounded or truncated | \& | B1 |
| :--- |
| M1 |
| M1 |
| A1 |
| B1 |
| B1 |
| B1 |
| 7 | \& | OR B1 and M2 for 800×0.95^{2} (B1 and M1 for 800×0.95) FT their 760 , but not 800 CAO. Penalise extra working -1 |
| :--- |
| Appreciate: Possible B1 and SC1 for (£)882 |
| Simple depreciate: Possible B1 and M1, answer 720 gets B1 M1 |
| If units are given they must be correct |
| SC1 for value between 20 to 30 inclusive divided by 30 or 31 correctly evaluated, it is also possible to award $1^{\text {st }}$ B1 for 25. A correct answer only of 0.9(mm per day) gets all 3 marks, other values do not |

\hline | 7. (a) Mid points $155,160,165$ $\begin{aligned} & 155 \times 10+160 \times 23+165 \times 27 \\ & \left(\sum f x=\right) 9685 \\ & 161.4(1666 \ldots) \end{aligned}$ |
| :--- |
| (b) Polygon with at least 3 vertices correctly plotted (vertical \& horizontal) |
| All 5 vertices of the polygon correct | \& B1

M1
A1
A1

M1
A1

6 \& | FT for their mid points from within group including bounds FT for correct sum of their $f x$ terms FT their $\sum f x / 60$ correct evaluated. Accept 161 from working Unsupported 161.4(1666...) awarded 4 marks. FT answer for bounds:(lower 159.4(1666...) , upper 163.4(1666...)) |
| :--- |
| No polygon M0. Ignore bars if polygon drawn Mid points - allow intention to be on lines SC1 for a correct polygon translated horizontally or all correct plots with no polygon (or curved polygon!) |

\hline
\end{tabular}

Paper 2 (Calculator allowed) - Higher Tier Summer 2010		Comments
8. (a) $56.42 / 1.24$ $=(£) 45.5(0)$ (b) $\begin{aligned} & \text { Idea } 211.50 \text { is } 117.5 \% \\ & 211.50 / 117.5 \quad \text { x } 100 \\ & \quad=(\mathfrak{£}) 180 \\ & \begin{aligned} \text { VAT }(£) 31.5(0) \end{aligned} \\ & \text { "their } 31.5(0) \text { " } \times 1.24 \\ & =39(.06) \text { (Euros) OR correct FT } \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & 8 \end{aligned}$	Alternative (b): 211.50×1.24 M1 262.26 (Euros) A1 Idea "their 262.26 " is 117.5% B1 "their 262.26 " 1117.5×100 M1 VAT 39(.06) (Euros) $\quad=223.2$ (Euros) A1
9. $\begin{aligned} 3.6^{2}+7.3^{2} & =\mathrm{AC}^{2} \\ \mathrm{AC}^{2} & =66.25 \\ 8 & \text { or } 8.1 \text { or } 8.14(\mathrm{~cm}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A2 } \\ & 4 \end{aligned}$	Correct statement (or cosine rule),accept as implied through working FT their AC^{2} if M1 awarded, rounded to whole or 1 dp or 2 dp . A 1 for $\mathrm{AC}=8.13(9 \ldots)$ or FT unrounded or truncated answer
10. $\begin{array}{ccc}\mathrm{V}^{2}=\mathrm{PR} & \text { or } & \mathrm{V} / \sqrt{ } \mathrm{R}=\sqrt{ } \mathrm{P} \\ \mathrm{V}^{2} / \mathrm{R}=\mathrm{P} & \text { or } & (\mathrm{V} / \sqrt{ } \mathrm{R})^{2}=\mathrm{P}\end{array}$ or $\mathrm{V}^{2} \div \mathrm{R}=\mathrm{P}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & 2 \end{aligned}$	Penalise further incorrect working -1
11. (a) (i) 3.4×10^{-2} (ii) 6×10^{6} (b) (i) $3.5(1) \times 10^{7}$ (ii) $1.7(2 \ldots) \times 10^{14}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B2 } \\ & \text { B2 } \\ & 6 \\ & \hline \end{aligned}$	B1 for 35100000 or 35.1×10^{6} B1 for $0.17(2) \times 10^{15}$ or correct not in standard form Penalise incorrect notation once only -1
12. (a) $\mathrm{FG}=17.9 \times \sin 34^{\circ}$ $F G=10 .(0095 \ldots)$ (b) $\begin{aligned} \tan \mathrm{y} & =13.2 / 18.7 \\ & =35(.2 \ldots) \end{aligned}$ (Accept answers in the range 34.9 to 35.4)	$\begin{aligned} & \text { M2 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A2 } \\ & 6 \end{aligned}$	M 1 for $\sin 34^{0}=\mathrm{FG} / 17.9$ (or equivalent for sine rule) OR alternative complete method A1 for $\tan \mathrm{y}=0.7$ (0588 ...)
13.(a) $8 \mathbf{x}+3 \mathbf{y}$ (b) $-5 x+9 y$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & 2 \end{aligned}$	Must be in simplest form (a) \& (b), no ISW!
$\begin{aligned} & \text { 14. (a) } \mathrm{y} \alpha 1 / \mathrm{x} \text { OR } \mathrm{y}=\mathrm{k} / \mathrm{x} \\ & 12=\mathrm{k} / 2 \\ & \mathrm{y}=24 / \mathrm{x} \end{aligned} \begin{array}{\|c\|c\|c\|r} \hline \mathrm{x} & 0.1 & 2 & \mathbf{3} \\ \hline \mathrm{y} & \mathbf{2 4 0} & 12 & 8 \\ \hline \end{array}$	$\begin{gathered} \hline \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \text { B2 } \\ 5 \end{gathered}$	FT non linear only Maybe implied in part (b) FT their non linear expression B1 for each value
15.(a) Sight of $x+5$ (as height) Area $=1 / 2(x+5)(x+3 x+2)$ Convincing step leading to $2 x^{2}+11 x+5$ (b) $\begin{aligned} & 3 x^{2}+11 \mathrm{x}+5=15 \text { or equivalent } \\ & \mathrm{x}=\left\{-11 \pm \sqrt{ }\left(11^{2}-4 \times 3 \mathrm{x}-10\right)\right\} / 6 \quad \text { Allow } 1 \text { slip } \\ & =\{-11 \pm \sqrt{ } 241\} / 6 \\ & \quad 0.75(\mathrm{~cm}) \end{aligned}$	B1 M1 A1 B1 M1 A1 A1 7	or equivalents $\text { FT } \begin{aligned} 2 x^{2}+11 x+5=15, & x=\left\{-11 \pm \sqrt{ }\left(11^{2}-4 \times 2 \times-10\right)\right\} / 4 \text { Allow } 1 \text { slip } \\ & =\{-11 \pm \sqrt{ } 201\} / 4 \\ & 0.79(\mathrm{~cm}) \end{aligned}$ Trial and improvement: M1 2 trials correct between $0.7 \& 0.8$ A1 Trail 0.754 or 0.755 correct (OR for FT 0.794 or 0.795) A1 0.75 (cm) (OR for FT 0.79 cm)
16. (a) $\begin{aligned} & \mathrm{BC}^{2}=8.6^{2}+6.7^{2}-2 \times 8.6 \times 6.7 \times \cos 140 \\ & \mathrm{BC}^{2}=207 .(12896 \ldots) \\ & \mathrm{BC}=14(.3919 \ldots \mathrm{~cm}) \end{aligned}$ (b) Area $=1 / 28.6 \times 6.7 \times \sin 140$ $=18.5\left(187 \ldots \mathrm{~cm}^{2}\right)$ (c) Use of their Area $=1 / 2$ base x height, $18.5187 \ldots=1 / 2 \quad 14.39 \ldots \mathrm{xht}$ Height $2.5(73 \ldots \mathrm{~cm})$	M1 A1 A1 M1 A1 M1 A1 7	FT their values from (a) \& (b)
17. (a) x^{2} horizontal plots at $1,4,9,16$ and 25 Plot all points correctly (b) $b=200 \pm 10$ Use of gradient to find a $a=-8 \pm 2$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & 5 \end{aligned}$	Allow 1 slip Horizontally \& vertically correct Accept graphical or substitution method FT their graph. An answer of 8 ± 2 implies M1
18. (a) Sin curve, through the origin ± 1 shown, and $\pm 180^{\circ}$ shown or implied (b) -52^{0} and -128^{0} with no other angles	M1 A1 B2 4	B1 for a correct angle. Accept unrounded values

WJEC
245 Western Avenue Cardiff CF5 2YX
Tel No 02920265000
Fax 02920575994
E-mail: exams@wjec.co.uk website: www.wjec.co.uk

