

GCSE MARKING SCHEME

MATHEMATICS 2-TIER

SUMMER 2010

INTRODUCTION

The marking schemes which follow were those used by WJEC for the Summer 2010 examination in GCSE MATHEMATICS - 2-TIER. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.

	Page
Mathematics Paper 1 - Foundation Tier	1
Mathematics Paper 1 - Higher Tier	4
Mathematics Paper 2 - Foundation Tier	6
Mathematics Paper 2 - Higher Tier	9

Mathematics Paper 1 - Foundation Tier

Paper 1 (Non calculator) -Foundation Tier	\checkmark	Marks	Comments
Summer 2010			
1. (a) (i) 12314		B1	C.A.O.
(ii) Six hundred and fifty one thousand three		B1	C.A.O.
hundred			
1. (b) (i) 43 and 47		B1	In either order
(ii) 12 and 37		B1	In either order
(iii) 55		B1	C.A.O.
(iv) 16		B1	C.A.O.
1. (c) 6580		B1	C.A.O.
1. (d) 30 (%)		B1	C.A.O.
		DA	
1. (e) 1, 35, 5, 7		B2	B1 for any 2 OR 3 factors and no incorrect numbers.
			OR the 4 correct factors and 1 incorrect number.
		D1	
2. (a) (1) 32 (ii) G		BI	C.A.O.
(11) 66		BI	C.A.U.
(1) (1) (0) $7(0)$		D1	
2.(0) (0).7(0)		BI	C.A.O.
(0).75		BI	
			If no answer offered on the dotted lines, allow the first two $D_{1} = C_{1} = C_{1} = C_{1} = C_{2} = C_{1} = C_{1} = C_{2} = C_{1} $
		DI	B1s if (0) / and/or (0) /5 seen in subsequent work.
$(0) \text{ or } 10\% .13 .15 \text{ or } \frac{3}{4}$		BI	F.I. their values.
3. (Viewed with diagram)		2.01	
Attempt to count squares		MI	
62 - 70		Al	Within the range inclusive
cm²		UI	Independent of the other marks
			Answers such as 65 ² get M1, A1, U0
		D1	
4. (a) Overlay $(1 + DE = 0.0)$		BI	Inclusive bounds are shown on overlay.
Point E so that $DE = 9.8$ (cm)			Allow the letter E only to mark the point.
4. (b) Overlay (viewed with diagram)		D1	
(1) angle 103°		BI	Allow $\pm 2^{\circ}$
(11) angle 42°		BI	Inclusive bounds are shown on overlay.
AC = 15.3 (cm)		BI	F.T. their diagram.
Must be a line from A cutting the given line through			If their angle is 40° AC = 14.4 (cm) ± 2 mm
B. Their point of intersection is C.			If their angle is $44^{\circ} \text{AC} = 16.0 \text{ (cm)} \pm 2\text{mm}$
If line is a 'dog leg', use part starting at A to decide			(Interpolate other angles between $40 - 44$)
the 42° and AC gets B0.			For angles outside this range, use a measuring tool.
Generally, use the overlay to check that their line			<u>Note:</u> A straight line drawn from A to end of the line through
AC is consistent with their value for AC.			B, gives AC=16.5 \pm 2mm. and gains the 3 rd B1. (The 42°
Otherwise use measuring tool.			would be B0).
5. (a) (i) certain		B1	C.A.O.
(ii) (an) even chance		B1	Accept 'evens'
(iii) impossible		B1	C.A.O.
(iv) unlikely	<u> </u>	B1	C.A.O.
(b) (i) $\frac{1}{4}$ OR 90/360 (ISW) OR equivalent.	\checkmark	B2	B1 for sight of $90\pm 2^{\circ}$.
	 ✓ 		OR B1 for F.T. their fraction : their angle $(85 - 95)$
			360
(ii) 120/360 of 240 <u>OR 120×2/3</u>	✓	M1	Allow 115° – 125°
= 80	\checkmark	A1	F.T. their '115 – 125' $(76 - 84)$ 80/240 gets M1, A0.
			If they work out C and D separately then M1 for either C or
			D worked out by a correct method and A1 for BOTH answers
			correct. (Values for C and D between 38 and 42 inclusive).

Paper 1 (Non calculator) Foundation Tier	\checkmark	Marks		Comments
Summer 2010		B1	CAO	Reverse coordinates gets 0
B(-3, 0)		B1	C.A.O.	Allow plots within a 2mm square inclusive
C(-2, -3)		B1	CAO	Ignore incorrect labelling
		DI	C.A.O.	Accept the letters A B C instead of points
				recept the fetters <i>H</i> ,D, e filstead of points
Parts (a) & (b) marked at the same time				
7. (a) Correct pattern with 8 black and 12 white discs		B1	C.A.O.	
0 0 0 0				
$0 \bullet \bullet \bullet 0$				
0 • • • 0				
0 0 0 0				
7 (b) 8 10		B2	B1 for each c	olumn
		02	F.T. from 1st	column (+2)
			1.1.1.1.0111.1.00	
7 (c) (i) 16/2		M1		
= 8		Al	C.A.O.	
(ii) $16 + 4$ OR $2 \times 8 + 4$		M1	F.T. $2 \times$ 'their	r 8' + 4
= 20		A1		
8. $a = 5$	✓	Bl	C.A.O.	(a1 ¹)
$b \equiv 2$	✓	BI	F.I. $1/-3\times$	
c = 4	\checkmark	BI D1	F.I. $[12 - 2 \times$	their b $J/2$
d = 7	~		F.1.18 - th	erration a + b + c
9 (a) 47 OR 36	1	M1	Any correct n	nethod for the multiplication of 47 by 36
$\times 36$ $\times 47$				
282 252	\checkmark	A1	For either 282	2 or 1410 OR for 252 or 1440
1410 1440			(Apply 'one e	error' in other methods)
1692 1692		4.1		
= 1692 seats $= 1692$ seats	\checkmark	AI	C.A.O.	rrors got MO AO
			Thee value of	nois get wo, Ao
9. (b) $(1/9 \text{ of } 72) = 8$		B1	Allow B1 for	4/9×72 OR 288/9 OR sight of 8
$\frac{4}{9} \text{ of } 72 = 32$		B1	C.A.O.	
9. (c) 10		B1	Accept -10	
10.(a) (i) 19.24		Bl	C.A.O.	
(11) 19240		BI	C.A.O.	
(11) 5.2		BI	C.A.O.	
10 (b) (i) 1000		B2	B1 for the 8 (OR 125 OR 10^3 B0 for 2x2x2x5x5x5
(ii) 9·02		B1	C.A.O.	N 125 OK 10 . B0 101 2/2/2/3/3/3
10. (c) (i) 6400		B1	C.A.O.	
(ii) 0·053		B1	C.A.O. 0.05	5300 etc gets B0
11 (2) 360 66 59		N/1	Any correct	athod a guing isoscales triangles
= 236	√ .∕		Any correct h	neurou, e.g. using isosceres triangles.
118	✓ ✓	B1	FT 'their 23	6' ÷ 2
			1.1.1. (non 23)	
11. (b) S		B1		
R		B1		
Q		B1		

Paper 1 (Non calculator) Foundation Tier	\checkmark	Marks	Comments	
Summer 2010				1
<u>All parts (a) – (d) marked at the same time</u>		D2	D1 for one 1 comest column	
12. (a) 6 6		B2	B I for any I correct column OP	
4 5			B1 for 6 6 with 5 5 with any one of	
4 5			the four rows of 4, 5	
4 5				
4 5				NOTES
(b) (i) 5/36 ISW		B2	F.T. their table	Penalise –1 for
			B1 for a numerator of 5 in a fraction	use of words such
			less than 1. B1 for the 36 in a fraction	as "5 out of 36",
			<1. Do not penalise incorrect reduction	"5 in 36" OR
(ii) 31/36 ISW		B1	F T 1 - 'their $5/36'$ ($\pm \frac{1}{6}$)	5:30 . When fraction and
(1) 51/50 15W		DI	B0 here if there is incorrect reduction	wrong notation
(c) 4/36 ISW		B1	F.T. consistent use of 'their 36'	seen DO NOT
				penalise wrong
(d) (i) $4/36 \times 360$		M1	F.T. 'their (c) × 360' $(\neq \frac{1}{2})$.	notation.
= 40		A1	A0 here if there is incorrect reduction.	
			M1, A0 for 40/360.	
(ii) Profit = $360 \times \pounds 1 - 40 \times \pounds 5$		Ml	F.T. 'their 40'	
$= \pm 160$		Al D1		
15. (a) 2 and 8 in any order 5 in the square and 12 5 in the cross		B1		
H1		DI		
13. (b) $x + y$ in the circle and xy in the cross		B2	B1 for either. Accept $x \times y$ for xy	
H1				
14. (Viewed with diagram)				
(a) $120(^{\circ})$		B1	Must be 3 figure bearing	
H3a 14 (b) 190 ± 52 OP 260 (190 52) OP against		M1		
H3b $(0) 180 + 32 \text{ OK } 500 - (180 - 32) \text{ OK equivalent}$		A1		
15. (a) $2 \times \pi \times 5$ or equivalent		M1	Accept their value of π for M1	
H4a 31.(4 cm)		A1	Watch for $5^2 = 10$ which gets M0, A0.	
15. (b) $\pi \times 10^2$		M1	Accept their value of π for M1. Needs in	tention of 10^2
$314. (cm^2)$		A1	$\pi \times 5^2$ is NOT a misread. It gets M0, A	0
H4b		1.(1	$\pi \times r^2 \times 10 \times 10$ gets M0, A0	
15. (c) $0.5 \times 2.8 \times (3 + 7)$			OR equivalent	
14 (cm)		AI		
16. (a) 12.5. 17 and 21.5	1	B3	B2 for any 2 correct.	
H5a		_	B1 for any one correct or sight of 4.5	
16. (b) $5n + 3$ OR $5 \times n + 3$		B2	B1 for 5n.	
H5d			Accept 5N, but penalise – 1 for using any	y other letter.
16. (c) $n \times n$ OR n^2		B1	Accept nn OR (any letter) ² without penalty,	
17 (a) Mathad with at least 2 correct prime factors		M1	Bu for pattern × pattern etc	For 2 nd orner
Sight of correct factors (2, 2, 2, 3, 3, 11)	√ √	Al	Ignore 1s seen	lore 2 error.
$2^3 \times 3^2 \times 11$ or $2^3 \ 3^2 \ 11$	v √	B1	FT their factors (with at least one index >	>1 used)
Нба			Do not ignore 1s.	i ubou).
17. (b) e.g. 2×3^2 not even powers, or 2×9 but not		E1	OR $4 \times 4 = 16$ and $5 \times 5 = 25$ so 18 not square	9
square			Do not accept "even powers" without re	levant working, nor
u.a.			"no number times itself gives 18". But a	lo accept " no
			WHOLE number times itself gives 18".	
18. Overlay	./	B3	NIAIK INTERNION. B1 for line (at least 1cm) B1 for arc (at least	1 cm) B1 for shading
Tick outside the region covered by the overlay.	v √		(F.T. arc centre A and a line crossing AB)	, , Di ioi shaanig
117	\checkmark		(Shading needs to be on both sides of AB)	
I I/			Note: Arc centre B is MR-1 and continue to	mark

Mathematics Paper 1 - Higher Tier

Paper 1 (Non- calculator) - Higher Tier Summer 2010	Marks	Comments
1. (a) 2 and 8 in any order	B1	
5 in the square and 12.5 in the cross	B1	
(b) $x+y$ in the circle and xy in the cross	B2 4	B1 for either. Accept <i>xxy</i> for <i>xy</i> .
2.(a) Correct reflection (in the line $x=-2$)	B2	B1 for a reflection in any vertical line, or B1 for drawing $x = -2$ or B1 for reflection in $y=-2$ without line shown.
(b) Correct translation	B2 4	B1 for translation 2 right or 3 up.
3. (a) $3x+20+x+60+x=180$ OR equivalent	M1	$A = 1 \times 1 \times 1 \times 1 \times 20^{0} = 10 \times 10^{10} \times 10^{10}$
$x = 20^{(6)}$	B1	Award M1 A1 for 20° without working
$y = 160^{\circ}$	M1	F1 $180 - x$. SC1 $4x + 80$ or $3x + 20 + x + 60$
(z =) 3x + 20 or 3×20+20	A1	For evaluation
(b) (i) $120^{(0)}$	B1	1 of evaluation
(0)(1) 120 (120)(120)(120)(120)(120)(120)(120)(120)	Ml	
$(11)^{-100+52}$ OK $500 = (100 = 52)$ OK	AI 8	
$232^{(0)}$	0	
4. (a) $2 \times \Pi \times 5$ or equivalent	M1	Accept their value of Π for M1
(b) $\Pi \times 10^2$ 31.(4 cm)	M1	Accept their value of Π for M1. Needs intention of 10^2
314.(cm ²)	A1 M1	1
(c) $0.5 \ge 2.8 \ge (3+7)$	A1	Or equivalent
$14 (cm^2)$	6	
5. (a) 12.5, 17 and 21.5	B3	B2 for any 2 correct.
		B1 for any one correct or sight of 4.5
(b) -2, 1, 6	B2	B1 for any 2 terms correct. SC1 for -3, -2, 1 OR 1 ² -3, etc
(c) (i) -2	BI B2	
(ii) $7(n-5)$ or $7x(n-5)$ or $7n - 35$ ISW	B2 B2	
(d) $5n+3$ or $5x n+3$	B2	B1 for missing or incorrect brackets, e.g. n -5 x 7, 7 n -5,
(e) $n x n + 1$ or $n^2 + 1$	12	n-5(7)
		BI for $5n$
6 (a) Mathad with at least 2 correct prime	M1	BI for sight of n or n x n, must be coefficient 1
factors	A1	Ignore 1s seen
Sight of correct factors (2, 2, 2, 3, 3, 11)	B1	FT their factors (with at least one index >1 used)
$2^3 \times 3^2 \times 11$ or $2^3 \cdot 3^2$.		Do not ignore 1s.
11	E1	Or $4x4=16$ and $5x5=25$ so 18 not square
	4	Do not accept "even powers" without relevant working,
(c) E.g. 2×3^2 not even powers, or 2×9 but		nor "no number times itself gives 18". But do accept "no
not square		whole number times itself gives 18"
	D2	
7. Correct region shaded	B3 3	Mark intention. BI for line, BI for arc, BI for shading
	5	(F1 arc centre A and a line crossing AB). Shading needs to be on both sides of AB. Remember are centre \mathbf{P} is
		MR-1 continue to mark
8. (a) $20 + x = 3x7$ OR $20/3 + x/3 = 7$	B1	OR first correct step FT until 2 nd error
		(a)&(b)
x = 3x7 - 20 OR $x/3 = 7 - 20/3$	B1	Working with 20+x incorrectly is 2 errors
x = 1	BI B1	
(b) $6x - 2x < 24$ OR $4x < 24$	B1	Or unsimplified equivalent
A ~ U	5	Must be simplified
		Use of "=" gets 0, unless replaced to finish, then B2
9.(a) -1	B1	
(b) Plots correct, allowing one error	B1	FT from (a)
All points correct & joined with a curve	BI M1	FT from (a)
(c) $y = -20$ seen or implied	A1	FT their graph
About -1.8	5	FT their graph

Paper 1 (Non- calculator) - Higher Tier	Marks	Comments
Summer 2010	D1	
(b) Computer Tropics	B1	
Reason e.g. Mode lower less time	F1	
(c) $2 \ 18 \ 24 \ 28$	B1	CAO Now only FT their cumulative table to (d)
(d) Intention to plot at upper bounds	B1	Ignore hars only if intention clear that line or curve is being used
3 unique vertical plots correct	M1	in (e)
All plots correct and joined	A1	
(e) (i) Median from cumulative graph ()	B1	FT from their cumulative graph in (e)
(ii) Attempt, (using the reading on the	M1	
horizontal)		
UQ - LQ	A1	
· · · · · · · · · · · · · · · · · · ·	10	If (c) is not cumulative then do not FT to (d) and (e)
11. Idea that 5s+3b=100 or s+b=22, which maybe via	S1	Working that meets just one of the two criteria, e.g. any 2 ages
calculations shown or equations		with total of 22
Equal coeffs. for simultaneous equations, or trial	M1	
pairs of values total 22 aiming to make 100		
Sara 17 and brother 5	A2	A1 for either correct
	4	Answers only credit all 4 marks
12. Implied or sight of 2^2 , 4, 3^2 or 9	B1	Or 2.5 ²
Considers 2.5^2	M1	
Evaluates 2.5^2 to 6.25	A1	_
Answer 3 given having <u>considered</u> 2.5 ²	A1	2.5^2 may not have been evaluated correctly
	4	SC1 for answer of 3 with spurious or no working
13.(a) All 6 correct entries	B3	B2 for any 2 correct pairs OR B1 for any 2 correct entries
(b) 0.4 x 0.3	M1	FT their unambiguous entries
= 0.12	A1	Or equivalent
	5	
14.(a) Alan AND reason given	B1	e.g. "smaller value for SD"
(b) Clive AND reason given	B1	E.g. "greater mean" ignore mention of SD. Accept Alan
		with full explanation mentioning SD & mean
(c) 58.9 AND 2.6	B1	
	3	
$15(a) 23^0$	B1	
Alternate segment theorem	F1	Accept equal to $A C B = A B R$
(b) 67^0	B1	
(U) 07 (Jaccobles triangle) angle at contro truice		FT if possible
(Isosceles mangle,) angle at centre twice		Do not accept calculation shown. Accept abbreviations
angle at circumference or alternative	4	
16. Area scale factor 3 ² or 9	BI	
90 / 9	M1	FT for M1 only incorrect evaluation of 3 ² as 6
$10 (\text{cm}^2)$	A1	CAO
	3	
17. (a) $(2w+3)(7w+1)$	B2	B1 for $(7w \dots 1) (2w \dots 3)$ or split mid term and 1^{st} step factor
-3/2 and -1/7	B1	F.T. for pair of brackets
(b) $(3e - 7) (3e + 7)$	B2	B1 for $(3e 7)(3e 7)$
	5	
18.(a) Reflection	B1	
(b) Translation to the right	B1	
Clearly crosses (5, 0)	B1	Allow SC1 for left shift with 1 indicated.
(c) Vertical translation downwards	B1	
-6	B1	FT from their vertical translation to -4 only.
-	5	Accept indication on the diagram
19.(x+3)(x-3) + 3(x+1) = 2(x+1)(x-3)	M2	M2 for correct numerator/denominator = 2
		OR M1 for 2 terms correct, or 1 slip.
$x^{2}-9+3x+3 = 2(x^{2}+x-3x-3)$	A2	A1 LHS or numerator, A1 RHS expansion
$x^2 - 7x = 0$	M1	FT for equivalent level of difficulty
x = 0 AND $x = 7$	A1	CAO
	6	

Mathematics Paper 2 - Foundation Tier

Paper 2 Foundation Tier (Calculator allowed)	\checkmark	Marks	Comments
Parts (a) & (b) marked at the same time			
$ \begin{array}{c} \underline{1. (a) (56.94)} \\ \underline{13.96 (files)} \\ \underline{22.08 (post-it)} \\ \underline{19.02 (paper)} \end{array} $		B1 B1 B1	C.A.O. C.A.O. C.A.O.
112(.00) (b) (£) 11.2(0)		B1 B1 5	F.T. their figures for 1 error <u>Unsupported 112(.00) gets B4.</u> F.T. their total (£)100.8(0) gets the B1.
2. kg cm or mm kilometres or km ml or cm ³ or l(itres)	$\begin{array}{c} \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \end{array}$	B1 B1 B1 B1 4	kilos gets B0 C.A.O. kilos gets B0 C.A.O. Ignore quantities, e.g. 56kg OR 20cm etc, each get B1
3. (a) radius tangent chord	✓ ✓ ✓	B1 B1 B1	C.A.O. C.A.O. C.A.O.
3. (b) cuboid rhombus trapezium	✓ ✓ ✓	B1 B1 B1	C.A.O. C.A.O. C.A.O.
3. (c) Both lines of symmetry	~	B2	B1 for either one of them and no incorrect lines. OR for both correct lines and 1 incorrect line.
<u>All parts (a) – (c) marked at the same time</u> 4. (a) 5, 14, 12, 6, 3		B2	B1 for any three/four correct frequencies If frequencies score 0, then give B1 for all 5 correct tallies.
(b) 1		B1	F.T. their table of frequencies Accept 1 and 14 but not 14 alone.
 (c) 0, 1, 2, 3, M along one axis OR 0,1,2,3,4 Uniform scale for the frequency axis starting at 0 		B1 B1	Anywhere within the base (inc.) of the corresponding bar. If no scale then B0, but allow one square to represent 1. If frequency scale starts with 1 at the top of the first square the starting at 0 will be implied for B1.
bars)		В2 7	B1 for any 3 or 4 correct bars on F.T.
5. (a) Printing Cost = $300 \times 9 + 2000$ = (£) 4700		M1 A1	C.A.O.
5. (b) Cost per book = $(5000 - 2000)/600$ = (£) 5		M1 A1	C.A.O. Accept embedded answers.
6. (a) Sum of the numbers (511) Sum / 7 73	\checkmark	M1 m1 A1	For attempt to add the numbers (totals of 421 – 601) If seen. C.A.O.
6. (b) 51 53 75 $\underline{78}$ 81 83 90 Median = 78		M1 A1	For attempting to order the numbers C.A.O.
6. (c) 39		B1	

Paper 2 - Foundation Tier (Calculator allowed)	\checkmark	Marks	Comments
Summer 2010 7 Man 5 to 7 ft OD 1.5 to 2.5 matron	-	D1	
(Man 1 cm Dinoscur = 2 cm)	 ✓ 	ы	Unsupported answers marked as
(Mail ICIII Diffusional – δ CIII) Multiplying factor = 8	/	D1	<u>follows</u> :
Multiplying factor – o	Ý	DI	25 40
Estimate height of dinosaur – estimate × factor	,	M1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Estimate neight of unlosaul – estimate \wedge factor E T their estimates \vee their SE (5 – 11 inc.)	\checkmark	1011	SC1 MI, AI (mc) SC1
F.1. then estimates \wedge then SF (5 – 11 life.) = correct answer for their figures		Δ1	
SC1 for answers which:	~	AI	metres 75
(a) only give man's height as 1cm and dinosaur's as			7.5 12 20 27.5
8 cm + 2 mm			
OR (b) a proper attempt at 'dividing' the diposaur's			F.T. their man's height estimate AND scale factors 5–11 inc.
height into equal parts		4	Correct units must be seen at least once to get the final $\Delta 1$
8 (a) 7/100		B1	$C \land O$
8. (a) 7/100		DI	C.A.O.
8 (b) 20/.84 OR 2000/84 OR 23 8(095) OR 20/84	\checkmark	M1	Sight of (f)19 32 gets this M1
= 23	\checkmark	A1	C = A O Allow A1 for an embedded 23 in their working
Change = 68n		A1	F T their 23
chunge oop	v		
9. (a) (i) 5		B1	C.A.O. Watch out for $20 \div 5 = 4$ which gets B0.
(ii) 22		B2	B1 for sight of 28 OR 'their $28' - 6$
9. (b) Add 7 (to the previous term)		B1	Accept +7
Multiply (previous term) by 3		B1	Accept ×3
10. (a) 12 (° C)		B1	C.A.O.
10. (b) -4 (° C)		B1	C.A.O.
		54	20.0 -
10. (c) $(+)$ 7 $(^{\circ}C)$		B1	B0 for -7
11 (a) $euros = 1200 \times 1.27$		M1	
= (f) 1524		A1	CAO Ignore units
11. (b) Pounds = $486/1.35$		M1	
= (f) 360		A1	C.A.O. Ignore units. Allow embedded answers
12. (a) 1		B1	C.A.O.
- 8		B1	F.T. 'their $1' - 9$ if answer is negative.
			6
12. (b) $x = 10/4$ I.S.W. (OR 2 ¹ / ₂ OR 2·5)		B2	Accept embedded answers such as $4 \times 2\frac{1}{2} - 7 = 3$
			F.T. $ax = b$ provided $a \neq 1$
			B1 for $4x = 10$
12. (c) $4x + 2y$		B2	B1 for either 4x OR 2y in an expression of the form $ax \pm by$
$13 23 \times 2 + 24 \times 13 + 25 \times 14 + 26 \times 10 + 27 (\times 1)$		M1	Not all required allow 1 error in working shown
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		111	Not an required, anow r entor in working shown.
= 995		Δ1	CAO
,,,,		111	
$14.(a) 46 \times 54$	1	M1	
100			
= 24.8(4) OR 25 ISW		A1	C.A.O. Ignore %.
			C C
14. (b) <u>77</u> × 100	İ	M1	
140			
= 55 (%)		A1	C.A.O.
	<u> </u>		

Paper 2 Foundation Tier (Calculator allowed)	\checkmark	Marks	Comments
Summer 2010		E1	A gent reference to question 2
15. (a) Reason, e.g. outside the fish & emp shop		LI	Ignore additional information given by the candidate once a
H1a			correct response has been given credit.
15. (b) Any 2 of:		E2	E1 for each response.
No under 15s, 30 appears in two boxes, may			Do not accept: Over 40s in one group, gaps between ages
object to giving their age			different
1141			Ignore additional information given by the candidate once a correct response has been given credit.
HID 15 (a) (i) Explanation and yaque no options asks 2		E1	Do not accont: could be more than one answer
auestions same question twice open		EI	Do not accept. could be more than one answer
questions, can't display answers easily,			Ignore additional information given by the candidate once a
can't answer if answer to Q2 is NO, many			correct response has been given credit.
payment methods, not same pattern as Q1			
& Q2		B1	
(11) States to give options OR give some			
question			
H1c			
16. (a) Volume = $6 \times 4 \times 5$		M1	
= 120		A1	
cm ³		U1	Independent of the other marks
16. (b) $(6 \times 4 + 4 \times 5 + 6 \times 5)$	\checkmark	M1	
Area = 2×74 OR $2 \times (6 \times 4 + 4 \times 5 + 6 \times 5)$	\checkmark	m1	Dependent on the M1
$= 148 (cm^2)$	\checkmark	Al	C.A.O.
17. (a) Strategy, \times 2.5 OR /4 then \times 10 or equivalent	\checkmark	M1	Ingredients to serve 10 people
Any 4 correct values seen	\checkmark	A1	For the spaghetti For the sauce
All values correct	\checkmark	A1	1000g/35ozFlour10tbsp olive oil
Accept 1000g and 2000g written as 1kg and 2kg			10 eggs 5 onions
units need to be correct			2000g/70oz Ifesh chopped toms.
H2a			50 Reaves of field basin
17. (b) 3.5 (oz)		B1	C.AO.
18. (a) 7x - 5x = 3 - 2		B1	F.T. until 2 nd error
2x = 1	\checkmark	B1	
$x = \frac{1}{2}$ ISW	\checkmark	B1	F.T. $ax = b$ provided $a \neq 1$
H3a			
18. (b) a'		B1	C.A.O.
H3C 18 (c) $b^2 + 3b$		B2	B1 for either term correct. Accent by b or bb as b^2 and b3 or
10. (0) 0 + 50		D2	$3 \times b$ or $b \times 3$ for 3b
H3d			If B2 penalise further incorrect working -1
18. (d) $4f = e + 3$		B1	Isolating the tem in <i>f</i> .
f = (e+3)/4		B1	Allow B1 for $f = e/4 + 3$
19. (a) Any correct 5% of a value used in workings $\frac{900}{50}$ $\frac{50}{200}$ (= $\frac{900}{100}$ $\frac{40}{100}$)	\checkmark	B1 M1	OP D1 and M2 for 800×0.05^2 (D1 and M1 for 800×0.05)
800 - 5% of $800 (= 800 - 40)760 - 5%$ of $760 (= 760 - 38)$	\checkmark	M1 M1	OK BI and M2 for 800×0.95 (BI and M1 for 80000.95) ET their 760, but not 800
$(f_{1})722$	\checkmark	Al	CAO Penalise extra working -1
			Appreciate: Possible B1 and SC1 for (£)882
Нба			Simple depreciate: Possible B1 and M1, answer 720 gets
		54	B1 M1
19. (b) 1 inch as $2.5(4 \text{ cm})$ or $25(.4 \text{ mm})$	\checkmark	BI	It units are given they must be correct
Keansing the need to divide by (4×7) Value between 20 and 20 inclusive : (4×7)		R1	SCI if for value between 20 to 50 inclusive divided by 30 or 31 correctly evaluated it is also possible to award $1^{st} R1$
correctly evaluated rounded or truncated	ľ		for 25.
			A correct answer only of 0.9(mm per day) gets all 3 marks,
H6b	<u> </u>		other values do not
20. $3.6^2 + 7.3^2 = AC^2$	\checkmark	M1	Correct statement (or cosine rule), accept as implied through
AU = 00.25 8 OR 8.1 OR 8.14 (cm)	\checkmark		WOIKING FT their AC^2 rounded to whole 1 dn or 2 dn if M1 awarded
H9	× .⁄	112	A1 for AC = $8.13(9)$
		L	

Mathematics Paper 2 -Higher Tier

Paper 2 (Calculator allowed) - Higher Tier		Comments
Summer 2010		
1.(a) Reason, e.g. outside the fish & chip shop	E1	Accept reference to question 2
(b) Any 2 of: No under 15s, 30 appears in two	E2	E1 for each response. Do not accept: Over 40s in one group, gaps
boxes, may object to giving their age	F 1	between ages different
(c) (1) Explanation, e.g. vague, no options, asks 2	EI	
questions, same question twice, open questions, can't display answers assily, can't		Mark responses in the sections they appear do not nick out
questions, can't display answers easily, can't answer if answer to Ω^2 is NO, many payment		mark responses in the sections they appear, ao not pick out
methods not same pattern as $\Omega 1 \& \Omega^2$		In all parts ignore additional information given by the candidate
(ii) States to give options OR give some options	B1	once a correct response has been given credit.
e.g. card/cash OR deletes 1 question	5	
2.(a) Strategy, $\times 2.5$ OR /4 then $\times 10$ or equivalent	M1	Ingredients to serve 10 people
Any 4 correct values seen	A1	For the spaghetti
All values correct	A1	1000g/35oz plain flour
		10 eggs
Accept 1000g and 2000g written as 1kg and 2kg – units		For the sauce
need to be correct		10 tbsp olive oli
(b) $25(27)$ CAO	B1	2000g/70oz fresh chonned tomatoes
(0) 5.5(02) CAO	4	50 leaves of fresh basil
3.(a) $7x - 5x = 3 - 2$	B1	FT until 2 nd error
$2\mathbf{x} = 1$	B1	
$x = \frac{1}{2}$ ISW	B1	FT ax = b provided $a \neq 1$
(b) $8(x+2)$	B2	B1 for $4(2x+4)$ or $2(4x+8)$
(c) a^{7}	B1	
(d) $b^2 + 3b$	B2	B1 for either term correct. Accept $b \times b$ or bb as b^2 , and $b3$ or $3 \times b$
	8	for 3b. If B2 penalise further incorrect working -1
4.(a) Uniform scale shown on y axis	BI	Must be shown, but then F1 an correct implied scale
Any 2 correct points plotted	D2	Does not have to start at 0, in which case start value must be seen D1 for any 1 correct plot
Correct straight line drawn	D2 B1	Previous R2 maybe implied by sight of a correct line
	DI	Trevious B2 maybe implied by signi of a correct line
(b) $(3+8)/2$ or $(-1+5)/2$	M1	The diagram may show horizontal/vertical lines to the axes from
or diagram showing strategy to find mid-point		points in a sketch.
(5.5,2)	A2	A1 for either. Accept other notation, e.g. missing brackets,
	7	x = 5.5, y = 2.
		If either coordinate correct do not assume method – check!
5 (a) All mainte compatibulistical	D2	(5.5,) implies MI AI BUI (, 2) does not imply MI AI. Check
5.(a) All points correctly plotted	ВЗ	B2 for 3 or 4 points correctly plotted
		SCL all correctly plotted but joined Reverse of axes is MR-1
(b) Line of best fit through Index 73, Arm 66	B2	B1 through means but not reasonable, OR
		B1 reasonable line not through means
(c) Positive	B1	Do not accept description
(d) (If no line) answer between 58 and 65 (cm)	B1	FT their line if drawn
	7	
6. (a) Any correct 5% of a value used in workings 800 - 50/25 = 800 (-800 - 40)	BI	OP D1 and M2 for 900×0.05^2 (D1 and M1 for 900×0.05)
760 - 5% of $760 (= 760 - 38)$	M1	FT their 760 but not 800
(£)722	Al	CAO. Penalise extra working -1
		Appreciate: Possible B1 and SC1 for (£)882
(b) 1 inch as 2.5(4 cm) or 25(.4 mm)		Simple depreciate: Possible B1 and M1, answer 720 gets B1 M1
Realising the need to divide by (4×7)	B1	If units are given they must be correct
Value between 20 and 30 inclusive \div (4×7)	B1	
correctly evaluated, rounded or truncated	B1	SC1 for value between 20 to 30 inclusive divided by 30 or 31
	7	correctly evaluated, it is also possible to award I^{-1} BI for 25.
	/	values do not
7. (a) Mid points 155. 160. 165	B1	
$155 \ge 10 + 160 \ge 23 + 165 \ge 27$	M1	FT for their mid points from within group including bounds
$(\sum fx =)$ 9685	A1	FT for correct sum of their <i>fx</i> terms
161.4(1666)	A1	FT their $\sum fx / 60$ correct evaluated. Accept 161 from working
		Unsupported 161.4(1666) awarded 4 marks. FT answer for
(b) Polygon with at least 3 vertices correctly plotted	N / 1	bounds:(lower 159.4(1666), upper 163.4(1666))
(verucal & norizontal) All 5 vertices of the polygon correct	IVII	No polygon IVIU. Ignore bars II polygon drawn Mid points - allow intention to be on lines
An 5 vertices of the polygon context	A1	SC1 for a correct polygon translated horizontally or all correct
		plots with no polygon (or curved polygon!)
	6	r

	1	~
Paper 2 (Calculator allowed) - Higher Tier		Comments
Summer 2010	N/1	
8. (a) $56.42 / 1.24 = (0) 45.5(0)$		
=(t)45.5(0)	AI	Altometry (h).
(b) $I_{dep} 211 50 \text{ is } 117 59/$	D1	Alternative (b): 21150×124
(b) Idea 211.50 IS 117.5% $211.50 / 117.5 \times 100$	DI M1	211.30×1.24 M1 262.26 (Funce) A1
$211.307117.3 \times 100$ - (f) 190		202.20 (Euros) A1 $1d_{0,a}$ "their 262.26" is 117.59/ B1
-(t) 180 VAT (f) 31 5(0)		"their 262 26" /117 5 x 100 MI
"their 31 $5(0)$ " y 1 24	M1	-2232(Furge) A1
= 39(.06) (Euros) OR correct FT	A1	VAT 39(.06) (Furos) A1
	8	
9 $36^2 + 73^2 = AC^2$	M1	Correct statement (or cosine rule) accept as implied through
$AC^2 = 66.25$	A1	working
8 or 8.1 or 8.14 (cm)	A2	FT their AC^2 if M1 awarded, rounded to whole or 1 dp or 2 dp.
	4	A1 for $AC = 8.13(9)$ or FT unrounded or truncated answer
10. $V^2 = PR$ or $V/\sqrt{R} = \sqrt{P}$	M1	
$V^2/R = P$ or $(V/\sqrt{R})^2 = P$ or $V^2 \div R = P$	A1	Penalise further incorrect working -1
	2	č
11. (a) (i) 3.4×10^{-2}	B1	
(ii) $6 \ge 10^6$	B1	
(b) (i) $3.5(1) \times 10^7$	B2	B1 for 35100000 or 35.1 x 10 ⁶
(ii) $1.7(2) \ge 10^{14}$	B2	B1 for $0.17(2) \ge 10^{15}$ or correct not in standard form
	6	Penalise incorrect notation once only -1
12. (a) $FG = 17.9 \text{ x} \sin 34^{\circ}$	M2	M1 for $\sin 34^0 = FG/17.9$ (or equivalent for sine rule)
FG = 10.(0095)	A1	
(b) $\tan y = 13.2 / 18.7$	M1	OR alternative complete method
= 35(.2)	A2	A1 for $\tan y = 0.7(0588)$
(Accept answers in the range 34.9 to 35.4)	6	
13.(a) $8x + 3y$	B1	Must be in simplest form (a) & (b), no ISW!
(b) -5x + 9y	B1	
	2	
14. (a) $y \alpha 1/x$ OR $y = k/x$	B1	
12 = k/2	M1	FT non linear only
y = 24/x	Al	Maybe implied in part (b)
x 0.1 2 3	B2	F1 their non linear expression
y 240 12 8	5	BI for each value
15.(a) Sight of $x + 5$ (as height)	BI	
Area = $\frac{1}{2}$ (x+5)(x+3x+2) Convincing stop loading to $2x^2 + 11x + 5$		or equivalents
Convincing step leading to 2x +11x+5	AI D1	
(b) $3x^2 + 11x + 5 = 15$ or equivalent	M1	FT $2x^2+11x+5=15$ $x = \{-11 + \sqrt{(11^2 - 4x^2 + 10)}\}/4$ Allow 1 slip
$x = (-11 + \sqrt{(11^2 - 4x^3)^2 + 10})/6$ Allow 1 slip		$= \{-11 + \sqrt{201}\}/4$
$= \frac{11 + \sqrt{241}}{6}$	A1	0.79 (cm)
0.75 (cm)	111	Trial and improvement:
		M1 2 trials correct between 0.7 & 0.8
	7	A1 Trail 0.754 or 0.755 correct (OR for FT 0.794 or 0.795)
		A1 0.75 (cm) (OR for FT 0.79 cm)
16. (a) BC ² = $8.6^2 + 6.7^2 - 2x8.6x\overline{6.7x\cos 140}$	M1	
$BC^2 = 207.(12896)$	A1	
BC = 14(.3919 cm)	A1	
(b) Area = $\frac{1}{2}$ 8.6 x 6.7 x sin 140	M1	
$= 18.5(187cm^2)$	A1	
(c) Use of their Area = $\frac{1}{2}$ base x height,	M1	FT their values from (a) & (b)
$18.5187 = \frac{1}{2}$ 14.39 x ht		
Height $2.5(73$ cm)		
$17 (a) y^2$ horizontal slate at 1 4 0 16 so 125	/ D1	Allow 1 clin
17. (a) X nonzonial piols at 1, 4, 9, 16 and 25 Plot all points correctly		Anow 1 Shp Horizontally & vertically correct
(b) $h = 200 + 10$	R1	
Use of gradient to find a	M1	Accept graphical or substitution method
a = -8 + 2	A1	FT their graph An answer of 8+2 implies M1
u <u>· · ·</u>	5	1 men gruph. The answer of 0-2 mpres with
18 (a) Sin curve through the origin	M1	
$+1$ shown and $+180^{\circ}$ shown or implied	A1	
(b) $_{-52^{\circ}}$ and $_{-128^{\circ}}$ with no other angles	R1	B1 for a correct angle Accent unrounded values
(b) 52 and 126 with no other angles	4	Brior a contest angle. Recept uniounded values

GCSE Mathematics - 2 Tier MS - Summer 2010

WJEC 245 Western Avenue Cardiff CF5 2YX Tel No 029 2026 5000 Fax 029 2057 5994 E-mail: <u>exams@wjec.co.uk</u> website: <u>www.wjec.co.uk</u>